메뉴 건너뛰기




Volumn 183, Issue 2-3, 2007, Pages 226-233

Artificial neural networks for quality control by ultrasonic testing in resistance spot welding

Author keywords

Artificial neural networks; Non destructive testing; Quality control; Resistance spot welding; Ultrasonic oscillograms

Indexed keywords

NEURAL NETWORKS; NONDESTRUCTIVE EXAMINATION; OSCILLOGRAPHS; QUALITY CONTROL; ULTRASONIC TESTING; VECTORS;

EID: 33846807775     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2006.10.011     Document Type: Article
Times cited : (92)

References (32)
  • 1
    • 0037427581 scopus 로고    scopus 로고
    • Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies
    • Jou M. Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies. J. Mater. Process. Technol. 132 (2003) 102-113
    • (2003) J. Mater. Process. Technol. , vol.132 , pp. 102-113
    • Jou, M.1
  • 2
    • 0041378156 scopus 로고    scopus 로고
    • Selection of schedules based on heat balance in resistance spot welding
    • Agashe S., and Zhang H. Selection of schedules based on heat balance in resistance spot welding. Weld. J. 82 7 (2003) 179s-183s
    • (2003) Weld. J. , vol.82 , Issue.7
    • Agashe, S.1    Zhang, H.2
  • 3
    • 9444297857 scopus 로고    scopus 로고
    • Application of impact tensile testing to spot welded sheets
    • Bayraktar E., Kaplan D., and Grumbach M. Application of impact tensile testing to spot welded sheets. J. Mater. Process. Technol. 153-154 (2004) 80-86
    • (2004) J. Mater. Process. Technol. , vol.153-154 , pp. 80-86
    • Bayraktar, E.1    Kaplan, D.2    Grumbach, M.3
  • 4
    • 33846843022 scopus 로고    scopus 로고
    • O. Martín, PhD Thesis, Ciencia de los Materiales e Ingeniería Metalúrgica, Universidad de Valladolid, 2004.
  • 5
    • 33846802955 scopus 로고
    • Ultrasonic testing of spot welds in thin gage steel
    • McIntire P. (Ed), American Society for Non-destructive Testing, USA
    • Mansour T. Ultrasonic testing of spot welds in thin gage steel. In: McIntire P. (Ed). Non-destructive Testing Handbook, v. 7 Ultrasonic Testing. 2nd ed. (1991), American Society for Non-destructive Testing, USA 557-568
    • (1991) Non-destructive Testing Handbook, v. 7 Ultrasonic Testing. 2nd ed. , pp. 557-568
    • Mansour, T.1
  • 6
    • 12144282023 scopus 로고    scopus 로고
    • Trends in aluminum resistance spot welding for the auto industry
    • Spinella D.J., Brockenbrough J.R., and Fridy J.M. Trends in aluminum resistance spot welding for the auto industry. Weld. J. 84 1 (2005) 34-40
    • (2005) Weld. J. , vol.84 , Issue.1 , pp. 34-40
    • Spinella, D.J.1    Brockenbrough, J.R.2    Fridy, J.M.3
  • 7
    • 0035325871 scopus 로고    scopus 로고
    • Inteligencias artificiales y ensayos ultrasónicos para la detección de defectos
    • Barrera G., Fabián M.A., Vélez M., and Villaseñor L. Inteligencias artificiales y ensayos ultrasónicos para la detección de defectos. Rev. Metal. Madrid 37 (2001) 403-411
    • (2001) Rev. Metal. Madrid , vol.37 , pp. 403-411
    • Barrera, G.1    Fabián, M.A.2    Vélez, M.3    Villaseñor, L.4
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Netw. 2 (1989) 359-366
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 10
    • 0037444267 scopus 로고    scopus 로고
    • Artificial neural network prediction of the microstructure of 60Si2MnA rod based on its controlled rolling and cooling process parameters
    • Jiahe A., Jiang X., Huiju G., Yaohe H., and Xishan X. Artificial neural network prediction of the microstructure of 60Si2MnA rod based on its controlled rolling and cooling process parameters. Mater. Sci. Eng. A 344 (2003) 318-322
    • (2003) Mater. Sci. Eng. A , vol.344 , pp. 318-322
    • Jiahe, A.1    Jiang, X.2    Huiju, G.3    Yaohe, H.4    Xishan, X.5
  • 11
    • 0025671079 scopus 로고
    • Image processing and pattern recognition in ultrasonograms by backpropagation
    • Silverman R.H., and Noetzel A.S. Image processing and pattern recognition in ultrasonograms by backpropagation. Neural Netw. 3 (1990) 593-603
    • (1990) Neural Netw. , vol.3 , pp. 593-603
    • Silverman, R.H.1    Noetzel, A.S.2
  • 12
    • 0029302162 scopus 로고
    • Material classification through neural networks
    • Roy A., Barat P., and De S.K. Material classification through neural networks. Ultrasonics 33 (1995) 175-180
    • (1995) Ultrasonics , vol.33 , pp. 175-180
    • Roy, A.1    Barat, P.2    De, S.K.3
  • 13
    • 0030153517 scopus 로고    scopus 로고
    • Application of neural networks to quantitative non-destructive evaluation
    • Wendel R., and Dual J. Application of neural networks to quantitative non-destructive evaluation. Ultrasonics 34 (1996) 461-465
    • (1996) Ultrasonics , vol.34 , pp. 461-465
    • Wendel, R.1    Dual, J.2
  • 14
    • 0031995081 scopus 로고    scopus 로고
    • Classification of wood species by neural network analysis of ultrasonic signals
    • Jordan R., Feeney F., Nesbitt N., and Evertsen J.A. Classification of wood species by neural network analysis of ultrasonic signals. Ultrasonics 36 (1998) 219-222
    • (1998) Ultrasonics , vol.36 , pp. 219-222
    • Jordan, R.1    Feeney, F.2    Nesbitt, N.3    Evertsen, J.A.4
  • 15
    • 0036578539 scopus 로고    scopus 로고
    • Detección, identificación y clasificación de defectos usando RNA y un manipulador robótico de 2 G.L. (algoritmos Kohonen y MLP)
    • Barrera G., Fabián M.A., and Ugalde C.A. Detección, identificación y clasificación de defectos usando RNA y un manipulador robótico de 2 G.L. (algoritmos Kohonen y MLP). Rev. Metal. Madrid 38 (2002) 163-172
    • (2002) Rev. Metal. Madrid , vol.38 , pp. 163-172
    • Barrera, G.1    Fabián, M.A.2    Ugalde, C.A.3
  • 16
    • 4544285213 scopus 로고    scopus 로고
    • Modelling tensile properties of gamma-based titanium aluminides using artificial neural network
    • McBride J., Malinov S., and Sha W. Modelling tensile properties of gamma-based titanium aluminides using artificial neural network. Mater. Sci. Eng. A 384 (2004) 129-137
    • (2004) Mater. Sci. Eng. A , vol.384 , pp. 129-137
    • McBride, J.1    Malinov, S.2    Sha, W.3
  • 17
    • 0043264893 scopus 로고    scopus 로고
    • Experimental study of nugget formation in resistance spot welding
    • Cho Y., and Rhee S. Experimental study of nugget formation in resistance spot welding. Weld. J. 82 8 (2003) 195s-201s
    • (2003) Weld. J. , vol.82 , Issue.8
    • Cho, Y.1    Rhee, S.2
  • 20
    • 0038990321 scopus 로고
    • Beryllium-copper and beryllium-nickel alloys
    • Mills K., Davis J.R., Destefani J.D., Dieterich D.A., Crankovic G.M., and Frissell H.J. (Eds), American Society for Metals, Metals Park, OH
    • Harkness J.C., and Guha A. Beryllium-copper and beryllium-nickel alloys. In: Mills K., Davis J.R., Destefani J.D., Dieterich D.A., Crankovic G.M., and Frissell H.J. (Eds). Metallography and Microstructures, Metals Handbook. 9th ed. vol. 9 (1985), American Society for Metals, Metals Park, OH 392-398
    • (1985) Metallography and Microstructures, Metals Handbook. 9th ed. , vol.9 , pp. 392-398
    • Harkness, J.C.1    Guha, A.2
  • 22
    • 0029061328 scopus 로고
    • Three-dimensional target recognition via sonar: a neural network model
    • Dror I.E., Zagaeski M., and Moss C.F. Three-dimensional target recognition via sonar: a neural network model. Neural Netw. 8 (1995) 149-160
    • (1995) Neural Netw. , vol.8 , pp. 149-160
    • Dror, I.E.1    Zagaeski, M.2    Moss, C.F.3
  • 23
    • 3142609139 scopus 로고    scopus 로고
    • Prediction of deformation characteristics of sintered aluminium preforms using neural networks
    • Selvakumar N., Radha P., Narayanasamy R., and Davidson M.J. Prediction of deformation characteristics of sintered aluminium preforms using neural networks. Model. Simul. Mater. Sci. Eng. 12 (2004) 611-620
    • (2004) Model. Simul. Mater. Sci. Eng. , vol.12 , pp. 611-620
    • Selvakumar, N.1    Radha, P.2    Narayanasamy, R.3    Davidson, M.J.4
  • 24
    • 4544358522 scopus 로고    scopus 로고
    • Artificial neural network model for material characterization by indentation
    • Tho K.K., Swaddiwudhipong S., Liu Z.S., and Hua J. Artificial neural network model for material characterization by indentation. Model. Simul. Mater. Sci. Eng. 12 (2004) 1055-1062
    • (2004) Model. Simul. Mater. Sci. Eng. , vol.12 , pp. 1055-1062
    • Tho, K.K.1    Swaddiwudhipong, S.2    Liu, Z.S.3    Hua, J.4
  • 25
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5 (1994) 989-993
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 28
    • 33846824366 scopus 로고    scopus 로고
    • Specimen dimensions and procedure for shear testing resistance spot, seam and embossed projection welds, ISO 14273, 2000.
  • 29
    • 0038756277 scopus 로고    scopus 로고
    • Critical specimen sizes for tensile-shear testing of steel sheets
    • Zhou M., Hu S.J., and Zhang H. Critical specimen sizes for tensile-shear testing of steel sheets. Weld. J. 78 9 (1999) 305s-313s
    • (1999) Weld. J. , vol.78 , Issue.9
    • Zhou, M.1    Hu, S.J.2    Zhang, H.3
  • 30
    • 9444249880 scopus 로고    scopus 로고
    • On the resistance spot weldability of galvanized interstitial free steel sheets with austenitic stainless steel sheets
    • Vural M., and Akkus A. On the resistance spot weldability of galvanized interstitial free steel sheets with austenitic stainless steel sheets. J. Mater. Process. Technol. 153-154 (2004) 1-6
    • (2004) J. Mater. Process. Technol. , vol.153-154 , pp. 1-6
    • Vural, M.1    Akkus, A.2
  • 32
    • 4544326411 scopus 로고    scopus 로고
    • Microstructure of APS alumina-titania coatings analysed using artificial neural network
    • Guessasma S., and Coddet C. Microstructure of APS alumina-titania coatings analysed using artificial neural network. Acta Mater. 52 (2004) 5157-5164
    • (2004) Acta Mater. , vol.52 , pp. 5157-5164
    • Guessasma, S.1    Coddet, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.