메뉴 건너뛰기




Volumn 30, Issue 1, 2007, Pages 169-172

A fuzzy hierarchical clustering method for clustering documents based on dynamic cluster centers

Author keywords

Clustering accuracy rate; Dynamic document cluster centers; Fuzzy hierarchical clustering; Information retrieval; Inverse document frequency; Term frequency factor

Indexed keywords

HIERARCHICAL SYSTEMS; INFORMATION RETRIEVAL; INFORMATION RETRIEVAL SYSTEMS; NUMERICAL METHODS;

EID: 33846799296     PISSN: 02533839     EISSN: 21587299     Source Type: Journal    
DOI: 10.1080/02533839.2007.9671241     Document Type: Article
Times cited : (11)

References (16)
  • 6
    • 0036645046 scopus 로고    scopus 로고
    • A New Method for Fuzzy Query Processing in Relational Database Systems
    • Chen, S. M., and Lin, Y. S., 2002. “A New Method for Fuzzy Query Processing in Relational Database Systems,”. Cybernetics and Systems:An International Journal, 33 (5):447–482.
    • (2002) Cybernetics and Systems: An International Journal , vol.33 , Issue.5 , pp. 447-482
    • Chen, S.M.1    Lin, Y.S.2
  • 7
    • 0036904021 scopus 로고    scopus 로고
    • Robust Fuzzy Clustering of Relational Data
    • Dave, R. N., and Sen, S., 2002. “Robust Fuzzy Clustering of Relational Data,”. IEEE Transactions on Fuzzy Systems, 10 (6):713–727.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.6 , pp. 713-727
    • Dave, R.N.1    Sen, S.2
  • 8
    • 0033280284 scopus 로고    scopus 로고
    • Hierarchical Unsupervised Fuzzy Clustering
    • Geva, A. B., 1999. “Hierarchical Unsupervised Fuzzy Clustering,”. IEEE Transactions on Fuzzy Systems, 7 (6):723–733.
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.6 , pp. 723-733
    • Geva, A.B.1
  • 11
    • 0036905922 scopus 로고    scopus 로고
    • Fuzzy Clustering with Volume Prototypes and Adaptive Clustering Merging
    • Kaymak, U., and Setnes, M., 2002. “Fuzzy Clustering with Volume Prototypes and Adaptive Clustering Merging,”. IEEE Transactions on Fuzzy Systems, 10 (6):705–712.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.6 , pp. 705-712
    • Kaymak, U.1    Setnes, M.2
  • 13
    • 84963831852 scopus 로고    scopus 로고
    • Proceedings of the 7th International Conference on Database Systems for Advanced Applications, Hong Kong, China.
    • Lin, K. I., and Kondadadi, R., “A Similarity-Based Soft Clustering Algorithm for Documents,”. Proceedings of the 7th International Conference on Database Systems for Advanced Applications. Hong Kong, China. pp. 40–47.
    • A Similarity-Based Soft Clustering Algorithm for Documents , pp. 40-47
    • Lin, K.I.1    Kondadadi, R.2
  • 14
    • 0014810305 scopus 로고
    • Numerical Methods for Fuzzy Clustering
    • Ruspini, E., 1970. “Numerical Methods for Fuzzy Clustering,”. Information Sciences, 2:319–350.
    • (1970) Information Sciences , vol.2 , pp. 319-350
    • Ruspini, E.1
  • 16
    • 85023961544 scopus 로고    scopus 로고
    • A Subset of the Collection of the Research Reports of the National Science Council, Taiwan, fuzzylab.et.ntust.edu.tw/NSC-Report-Database/292documents.html (Data Source: sticnet. stic.gov.tw).
    • A Subset of the Collection of the Research Reports of the National Science Council, Taiwan, http://fuzzylab.et.ntust.edu.tw/NSC-Report-Database/292documents.html (Data Source:http://sticnet. stic.gov.tw).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.