메뉴 건너뛰기




Volumn 371, Issue 3, 2007, Pages 247-264

Horn axiomatizations for sequential data

Author keywords

Association rules; Closure operators; Propositional Horn theories; Sequential patterns

Indexed keywords

APPROXIMATION THEORY; COMPUTATION THEORY; COMPUTER SCIENCE; DATA MINING; FORMAL LOGIC; MATHEMATICAL OPERATORS;

EID: 33846782841     PISSN: 03043975     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcs.2006.11.009     Document Type: Article
Times cited : (14)

References (62)
  • 1
    • 0027621699 scopus 로고    scopus 로고
    • R. Agrawal, T. Imielinski, A.N. Swami, Mining association rules between sets of items in large databases, in: P. Buneman, S. Jajodia (Eds.), Proceedings of the 1993 ACM SIGMOD Int. Conference on Management of Data, 1993, pp. 207-216
  • 4
    • 33846798582 scopus 로고    scopus 로고
    • J. Azé, Extraction de Connaissances à partir de Données Numériques et Textuelles, Ph.D. Thesis, Université Paris Sud, 2003
  • 7
    • 33846845263 scopus 로고    scopus 로고
    • J.L. Balcázar, J. Baixeries, Discrete deterministic datamining as knowledge compilation, in: SIAM Int. Workshop on Discrete Mathematics and Data Mining, 2003
  • 8
    • 77049116292 scopus 로고    scopus 로고
    • J.L. Balcázar, G.C. Garriga, On Horn axiomatizations for sequential data, in: Proceedings of the 10th Int. Conference on Database Theory, 2005, pp. 215-229
  • 10
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • Bayardo R. Efficiently mining long patterns from databases. SIGMOD Record 27 2 (1998) 85-93
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 85-93
    • Bayardo, R.1
  • 11
    • 33846787216 scopus 로고    scopus 로고
    • R. Bayardo, R. Agrawal, Mining the most interesting rules, in: ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 1999, pp. 145-154
  • 13
    • 0031161999 scopus 로고    scopus 로고
    • S. Brin, R. Motwani, C. Silverstein, Beyond market baskets: Generalizing association rules to correlations, in: Proceedings of the ACM SIGMOD Int. Conference on the Management of Data, 1997, pp. 265-276
  • 14
    • 0031162961 scopus 로고    scopus 로고
    • S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, in: Proceedings ACM SIGMOD Int. Conference on Management of Data, 1997, pp. 255-264
  • 15
    • 33846796497 scopus 로고    scopus 로고
    • M. Cadoli, Knowledge compilation and approximation: Terminology, questions, references, in: AI/MATH-96, 4th. Int. Symposium on Artificial Intelligence and Mathematics, 1996
  • 18
    • 78149312575 scopus 로고    scopus 로고
    • L. Cristofor, D. Simovici, Generating an informative cover for association rules, in: Proceedings of the IEEE Int. Conference on Data Mining, 2002, pp. 597-600
  • 20
    • 0012110191 scopus 로고
    • The lattice theory of functional dependencies and normal decompositions
    • Day A. The lattice theory of functional dependencies and normal decompositions. International Journal of Algebra and Computation 2 4 (1992) 409-431
    • (1992) International Journal of Algebra and Computation , vol.2 , Issue.4 , pp. 409-431
    • Day, A.1
  • 21
    • 38249007910 scopus 로고
    • Functional dependencies in relational databases: A lattice point of view
    • Demetrovics J., Libkin L., and Muchnik I.B. Functional dependencies in relational databases: A lattice point of view. Discrete Applied Mathematics 40 2 (1992) 155-185
    • (1992) Discrete Applied Mathematics , vol.40 , Issue.2 , pp. 155-185
    • Demetrovics, J.1    Libkin, L.2    Muchnik, I.B.3
  • 22
    • 0002819235 scopus 로고
    • Famille minimale d'implication informatives résultant d'un tableau de données binaires
    • Duquenne V., and Guigues J.-L. Famille minimale d'implication informatives résultant d'un tableau de données binaires. Mathématiques et Sciences Humaines 24 95 (1986) 5-18
    • (1986) Mathématiques et Sciences Humaines , vol.24 , Issue.95 , pp. 5-18
    • Duquenne, V.1    Guigues, J.-L.2
  • 23
    • 0000251093 scopus 로고
    • Identifying the minimal transversals of a hypergraph and related problems
    • Eiter T., and Gottlob G. Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24 6 (1995) 1278-1304
    • (1995) SIAM Journal on Computing , vol.24 , Issue.6 , pp. 1278-1304
    • Eiter, T.1    Gottlob, G.2
  • 24
    • 1942485254 scopus 로고    scopus 로고
    • J. Fürnkranz, P.A. Flach, An analysis of rule evaluation metrics, in: Proceedings of the 20th Int. Conference on Machine Learning, 2003, pp. 202-209
  • 26
    • 33846783387 scopus 로고    scopus 로고
    • G.C. Garriga, Formal methods for mining structured objects, Ph.D. Dissertation, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (in preparation)
  • 27
    • 33846810277 scopus 로고    scopus 로고
    • G.C. Garriga, Towards a formal framework for mining general patterns from structured data, in: Int. KDD Workshop on Multirelational Datamining, 2003, pp. 215-229
  • 28
    • 33846794983 scopus 로고    scopus 로고
    • G.C. Garriga, Statistical strategies to remove all the uniteresting association rules, in: Proceedings of 16th European Conference on Artificial Intelligence, 2004, pp. 430-435
  • 29
    • 35248820419 scopus 로고    scopus 로고
    • G.C. Garriga, Summarizing sequential data with closed partial orders, in: Proceedings of the SIAM Int. Conference on Data Mining, 2005, pp. 380-391
  • 30
    • 27544478009 scopus 로고    scopus 로고
    • Advances in frequent itemset mining implementations: report on fimi'03
    • Goethals B., and Zaki M. Advances in frequent itemset mining implementations: report on fimi'03. SIGKDD Explor. Newsl. 6 1 (2004) 109-117
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 109-117
    • Goethals, B.1    Zaki, M.2
  • 33
    • 84942847271 scopus 로고    scopus 로고
    • R. Hilderman, H. Hamilton, Evaluation of interestingness measures for ranking discovered knowledge, in: Proceedings of 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2001, pp. 247-259
  • 34
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mining: A general survey and comparison
    • Hipp J., Güntzer U., and Nakhaeizadeh G. Algorithms for association rule mining: A general survey and comparison. SIGKDD Explor. Newsl. 2 1 (2000) 58-64
    • (2000) SIGKDD Explor. Newsl. , vol.2 , Issue.1 , pp. 58-64
    • Hipp, J.1    Güntzer, U.2    Nakhaeizadeh, G.3
  • 35
  • 37
    • 33846841250 scopus 로고    scopus 로고
    • T. Lane, C.E. Brodley, Sequence matching and learning in anomaly detection for computer security, in: Proceedings AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management, 1997, pp. 43-49
  • 38
    • 33846784152 scopus 로고    scopus 로고
    • W. Lee, S.J. Stolfo, P.K. Chan, Learning patterns from unix process execution traces for intrusion detection, in: Proceedings AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management, 1997, pp. 50-56
  • 39
    • 84940104123 scopus 로고    scopus 로고
    • W. Lee, S.J. Stolfo, K. Mok, A data mining framework for building intrusion detection models, in: Proceedings of the IEEE Symposium on Security and Privacy, 1999, pp. 120-132
  • 40
    • 84890521199 scopus 로고    scopus 로고
    • D. Lin, Z.M. Kedem, Pincer search: A new algorithm for discovering the maximum frequent set, in: Proceedings of the Int. Conference on Extending Database Technology (EDBT), 1998, pp. 105-119
  • 41
    • 0031699077 scopus 로고    scopus 로고
    • Mining association rules: Anti-skew algorithms
    • 23-27 February, 1998, Orlando, FL, USA, IEEE Computer Society
    • Lin J.L., and Dunham M.H. Mining association rules: Anti-skew algorithms. Proceedings of the 14th Int. Conference on Data Engineering. 23-27 February, 1998, Orlando, FL, USA (1998), IEEE Computer Society 486-493
    • (1998) Proceedings of the 14th Int. Conference on Data Engineering , pp. 486-493
    • Lin, J.L.1    Dunham, M.H.2
  • 42
    • 33846794990 scopus 로고    scopus 로고
    • M. Liquiere, J. Sallantin, Structural machine learning with galois lattice and graphs, in: Proceedings of the 15th Int. Conference on Machine Learning, 1998, pp. 305-313
  • 43
    • 0002451812 scopus 로고
    • Implications partielles dans un contexte
    • Luxenburger M. Implications partielles dans un contexte. Math. Inf. Sci. Hum. 29 113 (1991) 35-55
    • (1991) Math. Inf. Sci. Hum. , vol.29 , Issue.113 , pp. 35-55
    • Luxenburger, M.1
  • 44
    • 0034592758 scopus 로고    scopus 로고
    • H. Mannila, C. Meek, Global partial orders from sequential data, in: Proceedings of the 6th Int. Conference on Knowledge Discovery in Databases, 2000, pp. 161-168
  • 46
    • 33846807943 scopus 로고    scopus 로고
    • C. Martins-Antunes, A.L. Oliveira, Sequential pattern mining algorithms: Trade-offs between speed and memory, in: PKDD'04 Workshop on Mining Graphs, Trees and Sequences, 2004
  • 47
    • 33846845262 scopus 로고    scopus 로고
    • N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Closed set based discovery of small covers for association rules, in: Proceedings of the 15th Int. Conference on Advanced Databases, 1999, pp. 361-381
  • 48
    • 0035016443 scopus 로고    scopus 로고
    • J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M. Hsu, PrefixSpan: Mining sequential patterns by prefixprojected growth, in: Proceedings of the 17th Int. Conference on Data Engineering, 2001, pp. 215-224
  • 49
    • 33846783386 scopus 로고    scopus 로고
    • J.L. Pfaltz, C.M. Taylor, Scientific knowledge discovery through iterative transformations of concept lattices, in: SIAM Int. Workshop on Discrete Mathematics and Data Mining, 2002, pp. 65-74
  • 50
    • 33846806175 scopus 로고    scopus 로고
    • A. Silberschatz, A. Tuzhilin, On subjective measures of interestingness in knowledge discovery, in: Proceedings of the 1st Int. Conf. on Knowledge Discovery and Data Mining, 1995, pp. 275-281
  • 51
    • 84897708583 scopus 로고    scopus 로고
    • R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, in: Proceedings of the 5th Int. Conference Extending Database Technology, EDBT'96, vol. 1057, 1996, pp. 3-17
  • 52
    • 0242625291 scopus 로고    scopus 로고
    • P. Tan, V. Kumar, J. Srivastava, Selecting the right interestingness measure for association patterns, in: ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining, 2002, pp. 32-41
  • 54
    • 78149328301 scopus 로고    scopus 로고
    • P. Tzvetkov, X. Yan, J. Han, TSP: Mining top-k closed sequential patterns, in: Proceedings of the 3rd IEEE International Conference on Data Mining, 2003, pp. 347-358
  • 55
    • 33745295400 scopus 로고    scopus 로고
    • B. Vaillant, P. Lenca, S. Lallich, A clustering of interestingness measures, in: Discovery Science, 2004, pp. 290-297
  • 56
    • 2442446148 scopus 로고    scopus 로고
    • J. Wang, J. Han, BIDE: Efficient mining of frequent closed sequences, in: Proceedings of the 19th Int. Conference on Data Engineering, 2003, pp. 79-90
  • 57
    • 33846820658 scopus 로고    scopus 로고
    • X. Yan, J. Han, R. Afshar, CloSpan: Mining closed sequential patterns in large datasets, in: Proceedings of the Int. Conference SIAM Data Mining, 2003, pp. 166-177
  • 58
    • 0034592942 scopus 로고    scopus 로고
    • M. Zaki, Generating non-redundant association rules, in: Proceedings of the 6th Int. Conference on Knowledge Discovery and Data Mining, 2000, pp. 34-43
  • 59
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An efficient algorithm for mining frequent sequences
    • Unsupervised Learning (special issue)
    • Zaki M. SPADE: An efficient algorithm for mining frequent sequences. Unsupervised Learning. Machine Learning Journal 42 1-2 (2001) 31-60 (special issue)
    • (2001) Machine Learning Journal , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.1
  • 62
    • 33846834256 scopus 로고    scopus 로고
    • M. Zaki, M. Ogihara, Theoretical foundations of association rules, in: SIGMOD-DMKD Int. Workshop on Research Issues in Data Mining and Knowledge Discovery, 1998


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.