-
1
-
-
0000719845
-
A note on the joint spectral radius
-
G.-C. Rota and G. Strang, "A note on the joint spectral radius," Indag. Math., vol. 22, pp. 379-381, 1960.
-
(1960)
Indag. Math
, vol.22
, pp. 379-381
-
-
Rota, G.-C.1
Strang, G.2
-
2
-
-
33746111685
-
Lyapunov indicator of discrete inclusions. I
-
N. E. Barabanov, "Lyapunov indicator of discrete inclusions. I," Autom. Remote Control, vol. 49, no. 2, pp. 152-157, 1988.
-
(1988)
Autom. Remote Control
, vol.49
, Issue.2
, pp. 152-157
-
-
Barabanov, N.E.1
-
3
-
-
33847177787
-
-
C. Heil and G. Strang, Continuity of the joint spectral radius: Application to wavelet, in Linear Algebra for Signal Processing, ser. IMA Math. Appl. New York: Springer-Verlag, 1995, 69, pp. 51-61.
-
C. Heil and G. Strang, "Continuity of the joint spectral radius: Application to wavelet," in Linear Algebra for Signal Processing, ser. IMA Vol. Math. Appl. New York: Springer-Verlag, 1995, vol. 69, pp. 51-61.
-
-
-
-
4
-
-
0002046992
-
Bounded semigroups of matrices
-
M. A. Berger and Y. Wang, "Bounded semigroups of matrices," Lin. Alg. Appl., vol. 166, pp. 21-27, 1992.
-
(1992)
Lin. Alg. Appl
, vol.166
, pp. 21-27
-
-
Berger, M.A.1
Wang, Y.2
-
5
-
-
0041956882
-
The generalized spectral-radius theorem: An analyticgeometric proof
-
L. Elsner, "The generalized spectral-radius theorem: An analyticgeometric proof," Lin. Alg. Appl., vol. 220, pp. 151-159, 1995.
-
(1995)
Lin. Alg. Appl
, vol.220
, pp. 151-159
-
-
Elsner, L.1
-
6
-
-
31244433291
-
The generalized spectral radius and extremal norms
-
F. Wirth, "The generalized spectral radius and extremal norms," Lin. Alg. Appl., vol. 342, pp. 17-40, 2002.
-
(2002)
Lin. Alg. Appl
, vol.342
, pp. 17-40
-
-
Wirth, F.1
-
7
-
-
33847227833
-
Stability theory of perturbed systems: Joint spectral radii and stability radii, ser. Lecture Notes in Mathematics. Berlin: Springer-Verlag
-
to appear
-
_, Stability theory of perturbed systems: Joint spectral radii and stability radii, ser. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2005, to appear.
-
(2005)
-
-
Wirth, F.1
-
8
-
-
10444237382
-
The generalized spectral radius is stricly increasing
-
_, "The generalized spectral radius is stricly increasing," Lin. Alg. Appl., vol. 395, pp. 141-153, 2005.
-
(2005)
Lin. Alg. Appl
, vol.395
, pp. 141-153
-
-
Wirth, F.1
-
9
-
-
33847180903
-
A dynamical systems construction of a counterexample to the finiteness conjecture
-
Seville, Spain, Dec
-
V. Kozyakin, "A dynamical systems construction of a counterexample to the finiteness conjecture," in Proc. CDC/ECC 2005, Seville, Spain, Dec. 2005.
-
(2005)
Proc. CDC/ECC 2005
-
-
Kozyakin, V.1
-
10
-
-
0001446685
-
The joint spectral radius and invariant sets of linear operators
-
in Russian
-
V. Y. Protasov, "The joint spectral radius and invariant sets of linear operators," Fundam. Prikl. Mat., vol. 2, no. 1, pp. 205-231, 1996, in Russian.
-
(1996)
Fundam. Prikl. Mat
, vol.2
, Issue.1
, pp. 205-231
-
-
Protasov, V.Y.1
-
11
-
-
0013311460
-
Absolute characteristic exponent of a class of linear nonstationary systems of differential equations
-
N. E. Barabanov, "Absolute characteristic exponent of a class of linear nonstationary systems of differential equations," Siberian Mathematical Journal, vol. 29, no. 4, pp. 521-530, 1988.
-
(1988)
Siberian Mathematical Journal
, vol.29
, Issue.4
, pp. 521-530
-
-
Barabanov, N.E.1
-
12
-
-
33847210344
-
Duality results for the joint spectral radius and transient behavior
-
Seville, Spain, Dec
-
E. Plischke, F. Wirth, and N. Barabanov, "Duality results for the joint spectral radius and transient behavior," in Proc. CDC/ECC 2005, Seville, Spain, Dec. 2005.
-
(2005)
Proc. CDC/ECC 2005
-
-
Plischke, E.1
Wirth, F.2
Barabanov, N.3
-
13
-
-
0004267646
-
-
Princeton, NJ: Princeton University Press
-
R. T. Rockafellar, Convex Analysis. Princeton, NJ: Princeton University Press, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
|