메뉴 건너뛰기




Volumn 14, Issue 1, 2007, Pages 59-71

Model error estimation in ensemble data assimilation

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY ASSESSMENT; DATA ASSIMILATION; ERROR ANALYSIS; MATRIX; NUMERICAL MODEL; STOCHASTICITY;

EID: 33846679917     PISSN: 10235809     EISSN: 16077946     Source Type: Journal    
DOI: 10.5194/npg-14-59-2007     Document Type: Article
Times cited : (21)

References (27)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Mon. Wea. Rev., 129, 2884-2903, 2001.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 2884-2903
    • Anderson, J.1
  • 2
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson, J. and Anderson, S.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Wea. Rev., 127, 2741-2758, 1999.
    • (1999) Mon. Wea. Rev , vol.127 , pp. 2741-2758
    • Anderson, J.1    Anderson, S.2
  • 3
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects
    • Bishop, C., Etherton, B., and Majundar, S.: Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects, Mon. Wea. Rev., 129, 420-436, 2001.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 420-436
    • Bishop, C.1    Etherton, B.2    Majundar, S.3
  • 4
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., van Leeuwen, P., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Mon. Wea. Rev., 126, 1719-1724, 1998.
    • (1998) Mon. Wea. Rev , vol.126 , pp. 1719-1724
    • Burgers, G.1    van Leeuwen, P.2    Evensen, G.3
  • 5
    • 0000674568 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias
    • Dee, D. and Da Silva, A.: Data assimilation in the presence of forecast bias, Quart. J. Roy. Meteorol. Soc., 117, 269-295, 1998.
    • (1998) Quart. J. Roy. Meteorol. Soc , vol.117 , pp. 269-295
    • Dee, D.1    Da Silva, A.2
  • 6
    • 0034277367 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias: The GEOS moisture analysis
    • Dee, D. and Todling, R.: Data assimilation in the presence of forecast bias: the GEOS moisture analysis, Mon. Wea. Rev., 128, 3268-3282, 2000.
    • (2000) Mon. Wea. Rev , vol.128 , pp. 3268-3282
    • Dee, D.1    Todling, R.2
  • 7
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10 143-10 162, 1994.
    • (1994) J. Geophys. Res , vol.99
    • Evensen, G.1
  • 8
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn., 53, 343-367, 2003.
    • (2003) Ocean Dyn , vol.53 , pp. 343-367
    • Evensen, G.1
  • 9
    • 0014552637 scopus 로고
    • Treatment of bias in recursive filtering
    • Friedland, B.: Treatment of bias in recursive filtering, IEEE Trans. Autom. Control, 14, 359-367, 1969.
    • (1969) IEEE Trans. Autom. Control , vol.14 , pp. 359-367
    • Friedland, B.1
  • 10
    • 33751349702 scopus 로고    scopus 로고
    • Unbiased minimum-variance input and state estimation for linear discrete-time systems
    • Gillijns, S. and De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems, Automatica, 43, 111-116, 2007.
    • (2007) Automatica , vol.43 , pp. 111-116
    • Gillijns, S.1    De Moor, B.2
  • 11
    • 0034433022 scopus 로고    scopus 로고
    • Adjoint methods in data assimilation for estimating model error
    • Griffith, A. and Nichols, N.: Adjoint methods in data assimilation for estimating model error, J. Flow Turbulence Combust., 65, 469-488, 2000.
    • (2000) J. Flow Turbulence Combust , vol.65 , pp. 469-488
    • Griffith, A.1    Nichols, N.2
  • 12
    • 27744494106 scopus 로고    scopus 로고
    • Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches
    • Hamill, T. and Whitaker, J.: Accounting for the error due to unresolved scales in ensemble data assimilation: a comparison of different approaches, Mon. Wea. Rev., 133, 3132-3147, 2005.
    • (2005) Mon. Wea. Rev , vol.133 , pp. 3132-3147
    • Hamill, T.1    Whitaker, J.2
  • 13
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background-error covariance estimates in an ensemble Kalman filter
    • Hamill, T., Whitaker, J., and Snyder, C.: Distance-dependent filtering of background-error covariance estimates in an ensemble Kalman filter, Mon. Wea. Rev., 129, 2776-2790, 2001.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 2776-2790
    • Hamill, T.1    Whitaker, J.2    Snyder, C.3
  • 14
    • 0035391382 scopus 로고    scopus 로고
    • Variance reduced ensemble Kalman filtering
    • Heemink, A., Verlaan, M., and Segers, A.: Variance reduced ensemble Kalman filtering, Mon. Wea. Rev., 129, 1718-1728, 2001.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 1718-1728
    • Heemink, A.1    Verlaan, M.2    Segers, A.3
  • 15
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer, P. and Mitchell, H.: A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Wea. Rev., 129, 123-137, 2001.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 123-137
    • Houtekamer, P.1    Mitchell, H.2
  • 17
    • 0023456666 scopus 로고
    • Unbiased minimum-variance linear state estimation
    • Kitanidis, P.: Unbiased minimum-variance linear state estimation, Automatica, 23, 775-778, 1987.
    • (1987) Automatica , vol.23 , pp. 775-778
    • Kitanidis, P.1
  • 18
    • 0001846226 scopus 로고    scopus 로고
    • Predictability: A problem partly solved
    • Lorenz, E.: Predictability: A problem partly solved, in: Proc. ECMWF Seminar on Predictability, Vol. I, pp. 1-18, 1996.
    • (1996) Proc. ECMWF Seminar on Predictability , vol.1 , pp. 1-18
    • Lorenz, E.1
  • 19
    • 0037201182 scopus 로고    scopus 로고
    • Estimation of systematic error in an equatorial ocean model using data assimilation
    • Martin, M., Bell, M., and Nichols, K.: Estimation of systematic error in an equatorial ocean model using data assimilation, Int. J. Numer. Fluids, 40, 435-444, 2002.
    • (2002) Int. J. Numer. Fluids , vol.40 , pp. 435-444
    • Martin, M.1    Bell, M.2    Nichols, K.3
  • 20
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size, balance, and model-error representation in an ensemble Kalman filter
    • Mitchell, H. and Houtekamer, P.: Ensemble size, balance, and model-error representation in an ensemble Kalman filter, Mon. Wea. Rev., 130, 2791-2808, 2002.
    • (2002) Mon. Wea. Rev , vol.130 , pp. 2791-2808
    • Mitchell, H.1    Houtekamer, P.2
  • 23
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle, R., McLaughlin, D., and Entekhabi, D.: Hydrologic data assimilation with the ensemble Kalman filter, Mon. Wea. Rev., 130, 103-114, 2002.
    • (2002) Mon. Wea. Rev , vol.130 , pp. 103-114
    • Reichle, R.1    McLaughlin, D.2    Entekhabi, D.3
  • 25
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. and Hamill, T.: Ensemble data assimilation without perturbed observations, Mon. Wea. Rev., 130, 1913-1924, 2002.
    • (2002) Mon. Wea. Rev , vol.130 , pp. 1913-1924
    • Whitaker, J.1    Hamill, T.2
  • 26
    • 0000755764 scopus 로고    scopus 로고
    • A general weak constraint applicable to operational 4DVAR data assimilation systems
    • Zupanski, D.: A general weak constraint applicable to operational 4DVAR data assimilation systems, Mon. Wea. Rev., 125, 2274-2292, 1997.
    • (1997) Mon. Wea. Rev , vol.125 , pp. 2274-2292
    • Zupanski, D.1
  • 27
    • 33644881232 scopus 로고    scopus 로고
    • Model error estimation employing an ensemble data assimilation approach
    • Zupanski, D. and Zupanski, M.: Model error estimation employing an ensemble data assimilation approach, Mon. Wea. Rev., 134, 1337-1354, 2006.
    • (2006) Mon. Wea. Rev , vol.134 , pp. 1337-1354
    • Zupanski, D.1    Zupanski, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.