-
1
-
-
0001498558
-
The (n, n)-disconjugacy of a 2nth-order linear difference equation
-
Ahlbrandt C.D., and Peterson A.C. The (n, n)-disconjugacy of a 2nth-order linear difference equation. Comput. Math. Appl. 28 (1994) 1-9
-
(1994)
Comput. Math. Appl.
, vol.28
, pp. 1-9
-
-
Ahlbrandt, C.D.1
Peterson, A.C.2
-
2
-
-
0000362832
-
A 2nth-order linear difference equation
-
Anderson D. A 2nth-order linear difference equation. Comm. Appl. Anal. 2 4 (1998) 521-529
-
(1998)
Comm. Appl. Anal.
, vol.2
, Issue.4
, pp. 521-529
-
-
Anderson, D.1
-
3
-
-
0005382145
-
-
Peking University Press, Beijing, China (in Chinese)
-
Chang K.C., and Lin Y.Q. Functional Analysis (1986), Peking University Press, Beijing, China (in Chinese)
-
(1986)
Functional Analysis
-
-
Chang, K.C.1
Lin, Y.Q.2
-
4
-
-
0141977370
-
The existence of periodic and subharmonic solutions of subquadratic second order difference equations
-
Guo Z.M., and Yu J.S. The existence of periodic and subharmonic solutions of subquadratic second order difference equations. J. London Math. Soc. (2) 68 (2003) 419-430
-
(2003)
J. London Math. Soc. (2)
, vol.68
, pp. 419-430
-
-
Guo, Z.M.1
Yu, J.S.2
-
5
-
-
7544222521
-
The existence of periodic and subharmonic solutions for second-order superlinear difference equations
-
Guo Z.M., and Yu J.S. The existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A 3 (2003) 226-235
-
(2003)
Sci. China Ser. A
, vol.3
, pp. 226-235
-
-
Guo, Z.M.1
Yu, J.S.2
-
8
-
-
3042548132
-
Existence of nonoscillatory solutions of some higher order difference equations
-
Migda M. Existence of nonoscillatory solutions of some higher order difference equations. Appl. Math. E-Notes 4 (2004) 33-39
-
(2004)
Appl. Math. E-Notes
, vol.4
, pp. 33-39
-
-
Migda, M.1
-
9
-
-
0001703086
-
Asymptotic behavior of solutions of a two-term difference equation
-
Peil T., and Peterson A. Asymptotic behavior of solutions of a two-term difference equation. Rocky Mountain J. Math. 24 (1994) 233-251
-
(1994)
Rocky Mountain J. Math.
, vol.24
, pp. 233-251
-
-
Peil, T.1
Peterson, A.2
-
10
-
-
0001901435
-
Minimax Methods in Critical Point Theory with Applications to Differential Equations
-
Rabinowitz P.H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math. vol. 65 (1986)
-
(1986)
CBMS Reg. Conf. Ser. Math.
, vol.65
-
-
Rabinowitz, P.H.1
|