메뉴 건너뛰기




Volumn 4, Issue 1, 2007, Pages 107-111

Feature extraction in remote sensing high-dimensional image data

Author keywords

Feature extraction; Feature reduction; High dimensional image data

Indexed keywords

DATA DIMENSIONALITY; DIGITAL NUMBERS (DN); FEATURE REDUCTION; HIGH-DIMENSIONAL IMAGE DATA;

EID: 33846625519     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2006.886429     Document Type: Article
Times cited : (13)

References (17)
  • 2
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Mar
    • J. H. Friedman, "Regularized discriminant analysis," J. Amer. Stat. Assoc., vol. 84, no. 405, pp. 165-175, Mar. 1989.
    • (1989) J. Amer. Stat. Assoc , vol.84 , Issue.405 , pp. 165-175
    • Friedman, J.H.1
  • 3
    • 0030189750 scopus 로고    scopus 로고
    • Covariance matrix estimation with limited training data
    • Jul
    • J. F. Hoffbeck and D. A. Landgrebe, "Covariance matrix estimation with limited training data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 763-767, Jul. 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell , vol.18 , Issue.7 , pp. 763-767
    • Hoffbeck, J.F.1    Landgrebe, D.A.2
  • 4
    • 0028483559 scopus 로고
    • Comparative analysis of statistical pattern recognition methods in high dimensional settings
    • Aug
    • S. Aeberhard, D. Coomans, and O. De Vel, "Comparative analysis of statistical pattern recognition methods in high dimensional settings," Pattern Recognit., vol. 27, no. 8, pp. 1065-1077, Aug. 1994.
    • (1994) Pattern Recognit , vol.27 , Issue.8 , pp. 1065-1077
    • Aeberhard, S.1    Coomans, D.2    De Vel, O.3
  • 5
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sep
    • B. M. Shahshahani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 6
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Dec
    • Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 7
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification
    • Jan
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538-542, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 8
    • 0030855587 scopus 로고    scopus 로고
    • Decision boundary feature extraction for neural networks
    • Jan
    • C. Lee and D. A. Landgrebe, "Decision boundary feature extraction for neural networks," IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 75-83, Jan. 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.1 , pp. 75-83
    • Lee, C.1    Landgrebe, D.A.2
  • 10
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Jul
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 11
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Jul
    • S. B. Serpico and L. Brazzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Brazzone, L.2
  • 13
    • 15944369665 scopus 로고    scopus 로고
    • Experiments on feature extraction in remotely sensed hyperspectral image data
    • Anchorage, AK
    • M. Zortea and V. Haertel, "Experiments on feature extraction in remotely sensed hyperspectral image data," in Proc. IGARSS, Anchorage, AK, 2004, pp. 964-967.
    • (2004) Proc. IGARSS , pp. 964-967
    • Zortea, M.1    Haertel, V.2
  • 14
    • 0029407869 scopus 로고
    • An extension to multiclass cases of the Jeffries-Matusita distance
    • Nov
    • L. Bruzzone, F. Roli, and S. B. Serpico, "An extension to multiclass cases of the Jeffries-Matusita distance," IEEE Trans. Geosci. Remote Sens., vol. 33, no. 6, pp. 1318-1321, Nov. 1995.
    • (1995) IEEE Trans. Geosci. Remote Sens , vol.33 , Issue.6 , pp. 1318-1321
    • Bruzzone, L.1    Roli, F.2    Serpico, S.B.3
  • 15
    • 33846576269 scopus 로고    scopus 로고
    • MultiSpec Application Version 3.1, Purdue Research Foundation, 2006, Aug. 30, Online, Available
    • MultiSpec Application Version 3.1, Purdue Research Foundation. (2006, Aug. 30). [Online], Available: http://dynamo.ecn.purdue.edu/~biehl/ MultiSpec/
  • 17
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Jan
    • R. Congalton, "A review of assessing the accuracy of classifications of remotely sensed data," Remote Sens. Environ., vol. 37, no. 1, pp. 35-46, Jan. 1991.
    • (1991) Remote Sens. Environ , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.