-
1
-
-
0004369631
-
A Lusin type theorem for gradients
-
Alberti G. A Lusin type theorem for gradients. J. Funct. Anal. 100 (1991) 110-118
-
(1991)
J. Funct. Anal.
, vol.100
, pp. 110-118
-
-
Alberti, G.1
-
2
-
-
0001400376
-
A compactness theorem for a new class of functions of bounded variations
-
Ambrosio L. A compactness theorem for a new class of functions of bounded variations. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Math. 3 (1989) 857-881
-
(1989)
Boll. Unione Mat. Ital. Sez. B Artic. Ric. Math.
, vol.3
, pp. 857-881
-
-
Ambrosio, L.1
-
3
-
-
0000465804
-
Existence theory for a new class of variational problems
-
Ambrosio L. Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291-322
-
(1990)
Arch. Ration. Mech. Anal.
, vol.111
, pp. 291-322
-
-
Ambrosio, L.1
-
5
-
-
0031522012
-
Fine properties of functions with bounded deformation
-
Ambrosio L., Coscia A., and Dal Maso G. Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 3 (1997) 201-238
-
(1997)
Arch. Ration. Mech. Anal.
, vol.139
, Issue.3
, pp. 201-238
-
-
Ambrosio, L.1
Coscia, A.2
Dal Maso, G.3
-
7
-
-
33750297145
-
Fine phase mixtures as minimizers of energy
-
Ball J.M., and James R.D. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100 1 (1987) 13-52
-
(1987)
Arch. Ration. Mech. Anal.
, vol.100
, Issue.1
, pp. 13-52
-
-
Ball, J.M.1
James, R.D.2
-
8
-
-
0032105153
-
Compactness and lower semicontinuity properties in SBD (Ω)
-
Bellettini G., Coscia A., and Dal Maso G. Compactness and lower semicontinuity properties in SBD (Ω). Math. Z. 228 2 (1998) 337-351
-
(1998)
Math. Z.
, vol.228
, Issue.2
, pp. 337-351
-
-
Bellettini, G.1
Coscia, A.2
Dal Maso, G.3
-
9
-
-
3042800094
-
An approximation result for special functions with bounded deformation
-
Chambolle A. An approximation result for special functions with bounded deformation. J. Math. Pures Appl. (9) 83 (2004) 929-954
-
(2004)
J. Math. Pures Appl. (9)
, vol.83
, pp. 929-954
-
-
Chambolle, A.1
-
10
-
-
30344450648
-
Addendum to: "An approximation result for special functions with bounded deformation"
-
Chambolle A. Addendum to: "An approximation result for special functions with bounded deformation". J. Math. Pures Appl. (9) 84 (2005) 137-145
-
(2005)
J. Math. Pures Appl. (9)
, vol.84
, pp. 137-145
-
-
Chambolle, A.1
-
12
-
-
33846621519
-
-
C. De Lellis, L. Székelyhidi, Simple proof of two-well rigidity, preprint 07-2006, University of Zürich, 2006
-
-
-
-
13
-
-
21844510408
-
Microstructures with finite surface energy: The two-well problem
-
Dolzmann G., and Müller S. Microstructures with finite surface energy: The two-well problem. Arch. Ration. Mech. Anal. 132 (1995) 101-141
-
(1995)
Arch. Ration. Mech. Anal.
, vol.132
, pp. 101-141
-
-
Dolzmann, G.1
Müller, S.2
-
14
-
-
0036384329
-
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity
-
Friesecke G., James R.D., and Müller S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506
-
(2002)
Comm. Pure Appl. Math.
, vol.55
, pp. 1461-1506
-
-
Friesecke, G.1
James, R.D.2
Müller, S.3
-
15
-
-
0003259059
-
Elliptic Partial Differential Equations of Second Order
-
Springer-Verlag, Berlin
-
Gilbarg D., and Trudinger N. Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. second ed. vol. 224 (1983), Springer-Verlag, Berlin
-
(1983)
Grundlehren Math. Wiss. second ed.
, vol.224
-
-
Gilbarg, D.1
Trudinger, N.2
-
16
-
-
0032338171
-
Finite difference approximation of the Mumford-Shah functional
-
Gobbino M. Finite difference approximation of the Mumford-Shah functional. Comm. Pure Appl. Math. 51 2 (1998) 197-228
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.2
, pp. 197-228
-
-
Gobbino, M.1
-
17
-
-
0003320921
-
Elliptic Problems in Nonsmooth Domains
-
Pitman, Boston, MA
-
Grisvard P. Elliptic Problems in Nonsmooth Domains. Monogr. Stud. Math. vol. 24 (1985), Pitman, Boston, MA
-
(1985)
Monogr. Stud. Math.
, vol.24
-
-
Grisvard, P.1
-
18
-
-
33846585981
-
-
B. Kirchheim, D. Preiss, Construction of Lipschitz mappings with finitely many nonrank-one connected gradients, in preparation
-
-
-
-
19
-
-
0005233951
-
Liouville's conformal mapping theorem under minimal regularity hypotheses
-
(in Russian)
-
Reshetnyak Yu.G. Liouville's conformal mapping theorem under minimal regularity hypotheses. Sibirsk. Mat. Zh. 8 (1967) 835-840 (in Russian)
-
(1967)
Sibirsk. Mat. Zh.
, vol.8
, pp. 835-840
-
-
Reshetnyak, Yu.G.1
-
20
-
-
21144462890
-
New examples of quasiconvex functions
-
Šverák V. New examples of quasiconvex functions. Arch. Ration. Mech. Anal. 119 (1992) 293-300
-
(1992)
Arch. Ration. Mech. Anal.
, vol.119
, pp. 293-300
-
-
Šverák, V.1
-
21
-
-
33846580103
-
-
L. Tartar, A note on separately convex functions (II), Note 18, Carnegie-Mellon University, 1987
-
-
-
-
22
-
-
0001530984
-
Some remarks on separately convex functions
-
Microstructure and Phase Transition, Springer-Verlag, New York
-
Tartar L. Some remarks on separately convex functions. Microstructure and Phase Transition. IMA Vol. Math. Appl. vol. 54 (1993), Springer-Verlag, New York 191-204
-
(1993)
IMA Vol. Math. Appl.
, vol.54
, pp. 191-204
-
-
Tartar, L.1
|