-
1
-
-
0000891819
-
Limit theorems for nonlinear functionals of stationary Gaussian sequence of vectors
-
Arcones M. Limit theorems for nonlinear functionals of stationary Gaussian sequence of vectors. Ann. Probab. 22 (1994) 2242-2274
-
(1994)
Ann. Probab.
, vol.22
, pp. 2242-2274
-
-
Arcones, M.1
-
2
-
-
0000323474
-
Central limit theorems for non-linear functionals of Gaussian fields
-
Breuer P., and Major P. Central limit theorems for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983) 425-441
-
(1983)
J. Multivariate Anal.
, vol.13
, pp. 425-441
-
-
Breuer, P.1
Major, P.2
-
4
-
-
0009040449
-
Stock price returns and the Joseph effect: A fractional version of the Black Scholes model
-
Seminar on Stochastic Analysis, Random Fields and Applications, Ascona, 1993, Birkhäuser, Verlag Basel/Switzerland
-
Cutland N., Kopp P.E., and Willinger W. Stock price returns and the Joseph effect: A fractional version of the Black Scholes model. Seminar on Stochastic Analysis, Random Fields and Applications, Ascona, 1993. Progress in Probability vol. 36 (1995), Birkhäuser, Verlag Basel/Switzerland 327-351
-
(1995)
Progress in Probability
, vol.36
, pp. 327-351
-
-
Cutland, N.1
Kopp, P.E.2
Willinger, W.3
-
5
-
-
33745028960
-
Stochastic integration with respect to fractional Brownian motion
-
Decreusefond L. Stochastic integration with respect to fractional Brownian motion. Collect.: Theory Appl. Long-Range Depend. (2003) 203-226
-
(2003)
Collect.: Theory Appl. Long-Range Depend.
, pp. 203-226
-
-
Decreusefond, L.1
-
6
-
-
0042637937
-
Stochastic analysis of the fractional Brownian motion
-
Decreusefond L., and Ustünel A. Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 2 (1999) 177-214
-
(1999)
Potential Anal.
, vol.10
, Issue.2
, pp. 177-214
-
-
Decreusefond, L.1
Ustünel, A.2
-
8
-
-
21344487770
-
On estimating the diffusion coefficient from discrete observations
-
Florens-Zmirou D. On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30 (1993) 790-804
-
(1993)
J. Appl. Probab.
, vol.30
, pp. 790-804
-
-
Florens-Zmirou, D.1
-
9
-
-
0014886852
-
A real variable lemma and the continuity of paths of some Gaussian processes
-
Garcia A., Rademich E., and Rumsey H. A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20 (1970) 565-578
-
(1970)
Indiana Univ. Math. J.
, vol.20
, pp. 565-578
-
-
Garcia, A.1
Rademich, E.2
Rumsey, H.3
-
10
-
-
0000529797
-
On the estimation of the diffusion coefficient for multi-dimensional diffusion processes
-
Genon-Catalot V., and Jacod J. On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. H. Poincaré 28 4 (1992) 119-151
-
(1992)
Ann. Inst. H. Poincaré
, vol.28
, Issue.4
, pp. 119-151
-
-
Genon-Catalot, V.1
Jacod, J.2
-
11
-
-
4243105025
-
Stochastic volatility and fractional Brownian motion
-
Gloter A., and Hoffmann M. Stochastic volatility and fractional Brownian motion. Stochastic Process. Appl. 113 1 (2004) 143-172
-
(2004)
Stochastic Process. Appl.
, vol.113
, Issue.1
, pp. 143-172
-
-
Gloter, A.1
Hoffmann, M.2
-
14
-
-
0034340752
-
Non-parametric kernel estimation of the diffusion coefficient of a diffusion
-
Jacod J. Non-parametric kernel estimation of the diffusion coefficient of a diffusion. Scand. J. Statist. 27 1 (2000) 83-96
-
(2000)
Scand. J. Statist.
, vol.27
, Issue.1
, pp. 83-96
-
-
Jacod, J.1
-
15
-
-
22644449415
-
Ordinary differential equations with fractal noise
-
Klingenhöfer F., and Zähle M. Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 4 (1999) 1021-1028
-
(1999)
Proc. Amer. Math. Soc.
, vol.127
, Issue.4
, pp. 1021-1028
-
-
Klingenhöfer, F.1
Zähle, M.2
-
16
-
-
1642312665
-
Stable convergence of certain functionals of diffusions driven by fBm
-
León J.R., and Ludeña C. Stable convergence of certain functionals of diffusions driven by fBm. Stochastic Anal. Appl. 22 (2004) 289-314
-
(2004)
Stochastic Anal. Appl.
, vol.22
, pp. 289-314
-
-
León, J.R.1
Ludeña, C.2
-
17
-
-
0000144882
-
Differential equations driven by rough signals (I): An extension of an inequality of L.C. Young
-
Lyons T. Differential equations driven by rough signals (I): An extension of an inequality of L.C. Young. Math. Res. Lett. 1 4 (1994) 451-464
-
(1994)
Math. Res. Lett.
, vol.1
, Issue.4
, pp. 451-464
-
-
Lyons, T.1
-
18
-
-
0001368717
-
Moment and probability bounds with quasi-supperadditive structure for the maximum partial sum
-
Móricz F.A., Serfling R.J., and Stout W.F. Moment and probability bounds with quasi-supperadditive structure for the maximum partial sum. Ann. Probab. 10 4 (1989) 1032-1040
-
(1989)
Ann. Probab.
, vol.10
, Issue.4
, pp. 1032-1040
-
-
Móricz, F.A.1
Serfling, R.J.2
Stout, W.F.3
-
19
-
-
0001714525
-
An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions
-
Norros I., Valkeila E., and Vitarmo J. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 4 (1999) 571-587
-
(1999)
Bernoulli
, vol.5
, Issue.4
, pp. 571-587
-
-
Norros, I.1
Valkeila, E.2
Vitarmo, J.3
-
20
-
-
0038771348
-
Differential equations driven by fractional brownian motion
-
Nualart D., and Rascanu A. Differential equations driven by fractional brownian motion. Collect. Math. 53 1 (2002) 55-81
-
(2002)
Collect. Math.
, vol.53
, Issue.1
, pp. 55-81
-
-
Nualart, D.1
Rascanu, A.2
-
21
-
-
34250296747
-
Law of the iterated logarithm for sums of non linear functions of Gaussian variables that exhibit long range dependence
-
Taqqu M. Law of the iterated logarithm for sums of non linear functions of Gaussian variables that exhibit long range dependence. Z. Wahrscheinlichkeistheorie verw. Gebiete 40 (1977) 203-238
-
(1977)
Z. Wahrscheinlichkeistheorie verw. Gebiete
, vol.40
, pp. 203-238
-
-
Taqqu, M.1
-
22
-
-
0000821514
-
An inequality of Hölder type, connected with Stieltjes integration
-
Young L.C. An inequality of Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936) 251-282
-
(1936)
Acta Math.
, vol.67
, pp. 251-282
-
-
Young, L.C.1
-
23
-
-
0038290919
-
Integration with respect to fractal functions and stochastic calculus. I
-
Zähle M. Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 3 (1998) 333-374
-
(1998)
Probab. Theory Related Fields
, vol.111
, Issue.3
, pp. 333-374
-
-
Zähle, M.1
|