메뉴 건너뛰기




Volumn 42, Issue 6, 2006, Pages 1683-1695

Lake water quality assessment from landsat thematic mapper data using neural network: An approach to optimal band combination selection

Author keywords

Artificial neural network; Band combination; Remote sensing; Water quality

Indexed keywords

NEURAL NETWORKS; REGRESSION ANALYSIS; REMOTE SENSING; WATER QUALITY;

EID: 33846537366     PISSN: 1093474X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1752-1688.2006.tb06029.x     Document Type: Article
Times cited : (65)

References (23)
  • 2
    • 0028671136 scopus 로고
    • Monitoring Water Quality in Reservoirs With IRS-IA-LISS-I
    • Choubey, V.K., 1994. Monitoring Water Quality in Reservoirs With IRS-IA-LISS-I. Water Resources Management 8:121-136.
    • (1994) Water Resources Management , vol.8 , pp. 121-136
    • Choubey, V.K.1
  • 3
    • 0032005702 scopus 로고    scopus 로고
    • An Artificial Neural Network Approach to Rainfall-Runoff Modeling
    • Dawson, D.W. and R. Wilby, 1998. An Artificial Neural Network Approach to Rainfall-Runoff Modeling. Hydrological Sciences Journal 43(1):47-65.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-65
    • Dawson, D.W.1    Wilby, R.2
  • 4
    • 0027334223 scopus 로고
    • The Use of the Thematic Mapper for the Analysis of Eutrophic Lakes: A Case Study in The Netherlands
    • Dekker, A.G. and S.W.M. Peters, 1993. The Use of the Thematic Mapper for the Analysis of Eutrophic Lakes: A Case Study in The Netherlands. International Journal of Remote Sensing 14(5):799-822.
    • (1993) International Journal of Remote Sensing , vol.14 , Issue.5 , pp. 799-822
    • Dekker, A.G.1    Peters, S.W.M.2
  • 5
    • 0033578440 scopus 로고    scopus 로고
    • Applying Artificial Neural Network Methodology to Ocean Color Remote Sensing
    • Gross, L., S. Thiria, and R. Frouin, 1999. Applying Artificial Neural Network Methodology to Ocean Color Remote Sensing. Ecological Modeling 120: 237-246.
    • (1999) Ecological Modeling , vol.120 , pp. 237-246
    • Gross, L.1    Thiria, S.2    Frouin, R.3
  • 6
    • 0042262540 scopus 로고    scopus 로고
    • Nitrogen and Phosphorus Concentrations and Export From an Ozark Plateau Catchment in the United States
    • Haggard, B.E., P.A. Moore, Jr., I. Chaubey, and E.H. Stanley, 2003. Nitrogen and Phosphorus Concentrations and Export From an Ozark Plateau Catchment in the United States. Biosystems Engineering 86:75-85.
    • (2003) Biosystems Engineering , vol.86 , pp. 75-85
    • Haggard, B.E.1    Moore Jr., P.A.2    Chaubey, I.3    Stanley, E.H.4
  • 7
    • 0002300771 scopus 로고
    • Some Potential Applications of Artificial Neural Networks in Financial Management
    • Hsieh, C., 1993. Some Potential Applications of Artificial Neural Networks in Financial Management. Journal of Systems Management 44(4):12-15.
    • (1993) Journal of Systems Management , vol.44 , Issue.4 , pp. 12-15
    • Hsieh, C.1
  • 8
    • 0344326232 scopus 로고    scopus 로고
    • A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments From Thematic Mapper Imagery
    • Keiner, L.E. and X.H. Yan, 1998. A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments From Thematic Mapper Imagery. Remote Sensing of Environment 66:153-165.
    • (1998) Remote Sensing of Environment , vol.66 , pp. 153-165
    • Keiner, L.E.1    Yan, X.H.2
  • 9
    • 0026609419 scopus 로고
    • Landsat Thematic Mapper Monitoring of Turbid Inland Water Quality
    • Lathrop, R., 1992. Landsat Thematic Mapper Monitoring of Turbid Inland Water Quality. Photgrammetric Engineering and Remote Sensing 58:465-470.
    • (1992) Photgrammetric Engineering and Remote Sensing , vol.58 , pp. 465-470
    • Lathrop, R.1
  • 10
    • 84986828862 scopus 로고
    • Analysis of Variation in Ocean Color
    • Morel, A. and L. Prieur, 1977. Analysis of Variation in Ocean Color. Limnology and Oceanography 22:709-722.
    • (1977) Limnology and Oceanography , vol.22 , pp. 709-722
    • Morel, A.1    Prieur, L.2
  • 13
    • 25844457225 scopus 로고    scopus 로고
    • Artificial Neural Network Application in Lake Water Quality Estimation Using Satellite Imagery
    • Panda, S.S., V. Garg, and I. Chaubey, 2004. Artificial Neural Network Application in Lake Water Quality Estimation Using Satellite Imagery. Journal of Environmental Informatics 4(2):65-74.
    • (2004) Journal of Environmental Informatics , vol.4 , Issue.2 , pp. 65-74
    • Panda, S.S.1    Garg, V.2    Chaubey, I.3
  • 14
    • 0025573333 scopus 로고
    • The Relationship of MSS and TM Digital Data With Suspended Sediments, Chlorophyll, and Temperature in Moon Lake, Mississippi
    • Ritchie, J.C., M.C. Charles, and F.R. Schibe, 1990. The Relationship of MSS and TM Digital Data With Suspended Sediments, Chlorophyll, and Temperature in Moon Lake, Mississippi. Remote Sensing and Environment 33:137-148.
    • (1990) Remote Sensing and Environment , vol.33 , pp. 137-148
    • Ritchie, J.C.1    Charles, M.C.2    Schibe, F.R.3
  • 15
    • 0022471098 scopus 로고
    • Learning Representations by Back Propagating Errors
    • Rumelhart, D.E., G.E. Hinton, and R.J. Williams, 1986. Learning Representations by Back Propagating Errors. Nature 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 18
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the Internal Behaviour of Artificial Neural Network River Flow Models
    • Sudheer, K.P. and A. Jain, 2004. Explaining the Internal Behaviour of Artificial Neural Network River Flow Models. Hydrological Processes 18(4):833-844.
    • (2004) Hydrological Processes , vol.18 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 20
    • 33846505394 scopus 로고    scopus 로고
    • Vegetation Indices
    • 2, Idrisi Production, Clarke University, Worcester, Massachusetts
    • Thiam, S. and R.J. Eastmen, 1999. Vegetation Indices. Guide to GIS and Image Processing, Vol 2, Idrisi Production, Clarke University, Worcester, Massachusetts, Vol. 2, pp. 107-122.
    • (1999) Guide to GIS and Image Processing , vol.2 , pp. 107-122
    • Thiam, S.1    Eastmen, R.J.2
  • 21
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-Runoff Modeling Using Artificial Neural Networks
    • Tokar, A.S. and A. Johnson, 1999. Rainfall-Runoff Modeling Using Artificial Neural Networks. Journal of Hydrologic Engineering, ASCE 4(3):232-239.
    • (1999) Journal of Hydrologic Engineering, ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, A.2
  • 22
    • 0000243355 scopus 로고
    • Learning in Artificial Neural Networks: A Statistical Perspective
    • White, H., 1989. Learning in Artificial Neural Networks: A Statistical Perspective. Neural Computation 1:425-464.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 23
    • 0033732170 scopus 로고    scopus 로고
    • Mapping Grain Sorghum Yield Variability Using Airborne Digital Videography
    • Yang, C. and G.L. Anderson, 2000. Mapping Grain Sorghum Yield Variability Using Airborne Digital Videography. Precision Agriculture 2:7-23.
    • (2000) Precision Agriculture , vol.2 , pp. 7-23
    • Yang, C.1    Anderson, G.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.