메뉴 건너뛰기




Volumn 26, Issue 1, 2007, Pages 13-23

Evolving dynamic Bayesian networks with Multi-objective genetic algorithms

Author keywords

Dynamic Bayesian networks; Genetic algorithms; Multi objective optimization

Indexed keywords

COMPUTATIONAL COMPLEXITY; GENETIC ALGORITHMS; HEURISTIC METHODS; OPTIMIZATION; PROBABILISTIC LOGICS;

EID: 33846533094     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-006-0002-6     Document Type: Article
Times cited : (28)

References (47)
  • 10
    • 33846529258 scopus 로고    scopus 로고
    • Murphy KP (2005) Dynamic Bayesian networks. www.cs.ubc.ca/~murphyk/ Papers/dbnchapter.pdf. To appear in Probabilistic Graphical Models, M. Jordan. Last accessed April 13 2005
    • Murphy KP (2005) Dynamic Bayesian networks. www.cs.ubc.ca/~murphyk/ Papers/dbnchapter.pdf. To appear in Probabilistic Graphical Models, M. Jordan. Last accessed April 13 2005
  • 11
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17):2271-2282
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 12
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim SY, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4(3):228-235
    • (2003) Briefings in Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 13
    • 85142170700 scopus 로고    scopus 로고
    • Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, d'Alche Bue F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19:ii138-ii148, Supplement 2
    • Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, d'Alche Bue F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19:ii138-ii148, Supplement 2
  • 14
    • 12344257752 scopus 로고    scopus 로고
    • GeneNetwork: An interactive tool for reconstruction of genetic networks using microarray data
    • Wu CC, Huang HC, Juan HF, Chen ST (2004) GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20(18):3691-3693
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3691-3693
    • Wu, C.C.1    Huang, H.C.2    Juan, H.F.3    Chen, S.T.4
  • 15
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18):3594-3603
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 16
    • 0000735610 scopus 로고
    • Operations for learning with graphical models
    • Buntine WL (1994) Operations for learning with graphical models. J Artif Intell Res 2:159-225
    • (1994) J Artif Intell Res , vol.2 , pp. 159-225
    • Buntine, W.L.1
  • 17
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Technical Report MSR-TR-95-06, Microsoft Research, March
    • Heckerman D (1995) A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, March 1995
    • (1995)
    • Heckerman, D.1
  • 19
    • 0009694212 scopus 로고    scopus 로고
    • An introduction to Bayesian network theory and usage
    • Technical Report 00-03, IDIAP, February
    • Stephenson TA (2000) An introduction to Bayesian network theory and usage. Technical Report 00-03, IDIAP, February 2000
    • (2000)
    • Stephenson, T.A.1
  • 21
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • CooperG, Herskovits E(1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309-347
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 22
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Fisher D, Lenz H-J eds, Springer Verlag
    • Chickering DM (1996) Learning Bayesian networks is NP-complete. In: Fisher D, Lenz H-J (eds) Learning from data: AI and statistics. Springer Verlag
    • (1996) Learning from data: AI and statistics
    • Chickering, D.M.1
  • 23
    • 4243304088 scopus 로고
    • Probabilistic network construction using the minimum description length principle
    • Technical Report UU-CS-1994-27, Utrecht University, Dept. of Computer Science, July
    • Bouckaert RR (1994) Probabilistic network construction using the minimum description length principle. Technical Report UU-CS-1994-27, Utrecht University, Dept. of Computer Science, July 1994
    • (1994)
    • Bouckaert, R.R.1
  • 24
    • 0343665345 scopus 로고    scopus 로고
    • Discovering probabilistic knowledge from databases using evolutionary computation and minimum description length principle
    • Koza JR et al eds, Morgan Kaufmann, pp
    • Lam W, Wong ML, Leung KS, Ngan PS (1998) Discovering probabilistic knowledge from databases using evolutionary computation and minimum description length principle. In: Koza JR et al (eds) Proceeding of the genetic programming 1998. Morgan Kaufmann, pp 786-794
    • (1998) Proceeding of the genetic programming , pp. 786-794
    • Lam, W.1    Wong, M.L.2    Leung, K.S.3    Ngan, P.S.4
  • 25
    • 0344447109 scopus 로고    scopus 로고
    • Predicting the survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
    • Sierra B, Larranaga P (1998) Predicting the survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artif Intell Med 14(1-2):215-230
    • (1998) Artif Intell Med , vol.14 , Issue.1-2 , pp. 215-230
    • Sierra, B.1    Larranaga, P.2
  • 26
    • 33846512543 scopus 로고    scopus 로고
    • de Campos LM, Huete JF (1999) Approximating causal orderings for Bayesian networks using genetic algorithms and simulated Annealing. Technical Report #DECSAI-99021, U. of Grenada, Uncertainty Treatment in Artificial Intelligence Group, May 1999
    • de Campos LM, Huete JF (1999) Approximating causal orderings for Bayesian networks using genetic algorithms and simulated Annealing. Technical Report #DECSAI-99021, U. of Grenada, Uncertainty Treatment in Artificial Intelligence Group, May 1999
  • 27
    • 1642340376 scopus 로고    scopus 로고
    • Learning Bayesian networks from incomplete data using evolutionary algorithms
    • Banzhaf W et al eds
    • Myers JW, Laskey KB, DeJong KA (1999) Learning Bayesian networks from incomplete data using evolutionary algorithms. In Banzhaf W et al (eds) Proceedings of the GECCO-99, pp 458-465
    • (1999) Proceedings of the GECCO-99 , pp. 458-465
    • Myers, J.W.1    Laskey, K.B.2    DeJong, K.A.3
  • 28
    • 84944314872 scopus 로고    scopus 로고
    • Towards a more efficient evolutionary induction of Bayesian networks
    • Cotta C, Murzabal J (2002) Towards a more efficient evolutionary induction of Bayesian networks. In: Proceedings of the PPSN 2002, pp 730-739
    • (2002) Proceedings of the PPSN 2002 , pp. 730-739
    • Cotta, C.1    Murzabal, J.2
  • 29
    • 33846543494 scopus 로고    scopus 로고
    • A permutation genetic algorithm for variable ordering in learning Bayesian networks from data
    • Langdon WB et al eds, Morgan Kaufmann
    • Hsu WH, Guo H, Perry BB, Stilson JA (2002) A permutation genetic algorithm for variable ordering in learning Bayesian networks from data. In: Langdon WB et al (eds) Proceedings of the GECCO 2002, pp. 383-390, Morgan Kaufmann
    • (2002) Proceedings of the GECCO , pp. 383-390
    • Hsu, W.H.1    Guo, H.2    Perry, B.B.3    Stilson, J.A.4
  • 30
    • 33846489927 scopus 로고    scopus 로고
    • Harwood S, Scheines R (2002) Genetic algorithm search over causal models. Technical Report CMU-PHIL-131, Carnegie Mellon University, Dept. of Philosophy
    • Harwood S, Scheines R (2002) Genetic algorithm search over causal models. Technical Report CMU-PHIL-131, Carnegie Mellon University, Dept. of Philosophy
  • 31
    • 1842792773 scopus 로고    scopus 로고
    • A hybrid data mining approach to discover bayesian networks using evolutionary programming
    • Langdon WB et al eds
    • Wong ML, Lee SY, Leung KS (2002) A hybrid data mining approach to discover bayesian networks using evolutionary programming. In: Langdon WB et al (eds) Proceedings of the GECCO 2002, pp 214-221
    • (2002) Proceedings of the GECCO , pp. 214-221
    • Wong, M.L.1    Lee, S.Y.2    Leung, K.S.3
  • 32
    • 35248848492 scopus 로고    scopus 로고
    • Building a GA from design principles for learning Bayesian networks
    • Cantu-Paz E et al eds, Springer-Verlag, pp
    • van Dijk S, Thierens D, van der Gaag LC (2003) Building a GA from design principles for learning Bayesian networks. In: Cantu-Paz E et al (eds) Proceedings of the GECCO 2003, Springer-Verlag, pp 886-897
    • (2003) Proceedings of the GECCO , pp. 886-897
    • van Dijk, S.1    Thierens, D.2    van der Gaag, L.C.3
  • 33
  • 34
    • 0035340322 scopus 로고    scopus 로고
    • Evolutionary learning of dynamic probabilistic models with large time lags
    • Tucker A, Lui X, Ogden-Swift A (2001) Evolutionary learning of dynamic probabilistic models with large time lags. Int J Intell Syst 16(5):621-646
    • (2001) Int J Intell Syst , vol.16 , Issue.5 , pp. 621-646
    • Tucker, A.1    Lui, X.2    Ogden-Swift, A.3
  • 35
    • 35248867855 scopus 로고    scopus 로고
    • Spatial operators for evolving dynamic Bayesian networks from spatio-temporal data
    • Cantu-Paz E et al eds, Springer-Verlag, pp
    • Tucker A, Liu X, Garway-Heath D (2003) Spatial operators for evolving dynamic Bayesian networks from spatio-temporal data. In: Cantu-Paz E et al (eds) Proceedings of the GECCO 2003, Springer-Verlag, pp 2360-2371
    • (2003) Proceedings of the GECCO , pp. 2360-2371
    • Tucker, A.1    Liu, X.2    Garway-Heath, D.3
  • 36
    • 33846501839 scopus 로고    scopus 로고
    • Learning dynamic Bayesian networks from multivariate time series with changing dependencies
    • Proceedings of the 5th intelligent data analysis conference IDA, Springer-Verlag, pp, 2003
    • Tucker A, Liu X (2003) Learning dynamic Bayesian networks from multivariate time series with changing dependencies. In: Proceedings of the 5th intelligent data analysis conference (IDA 2003), Springer-Verlag, pp 100-110, 2003. LNCS 2810
    • (2003) LNCS
    • Tucker, A.1    Liu, X.2
  • 38
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Comput 3(1): 1-16
    • (1995) Evolutionary Comput , vol.3 , Issue.1 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2
  • 39
    • 0034201456 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: Analyzing the state-of-the-art
    • van Veldhuizen DA, Lamont GB (2000) Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation 8(2): 125-147
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 125-147
    • van Veldhuizen, D.A.1    Lamont, G.B.2
  • 42
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461-464
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 43
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen J (1986) Stochastic complexity and modeling. Ann Stat 14(3): 1080-1100
    • (1986) Ann Stat , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 44
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(15):509-512
    • (1999) Science , vol.286 , Issue.15 , pp. 509-512
    • Barabasi, A.-L.1    Albert, R.2
  • 46
  • 47
    • 0003211626 scopus 로고
    • Genetic micro programming of neural networks
    • Kinnear KE ed, MIT Press, pp
    • Gruau F (1994) Genetic micro programming of neural networks. In: Kinnear KE (ed) Advances in genetic programming, MIT Press, pp 495-518
    • (1994) Advances in genetic programming , pp. 495-518
    • Gruau, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.