-
1
-
-
24244444170
-
-
PHRVAO 0031-899X 10.1103/PhysRev.109.1492
-
P. Anderson, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.109.1492 109, 1492 (1958).
-
(1958)
Phys. Rev.
, vol.109
, pp. 1492
-
-
Anderson, P.1
-
2
-
-
0040793613
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.57.287
-
P. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.57.287 57, 287 (1985).
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 287
-
-
Lee, P.1
Ramakrishnan, T.V.2
-
3
-
-
45849156033
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.70.035115
-
Y. Asada, K. Slevin, and T. Ohtsuki, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.035115 70, 035115 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 035115
-
-
Asada, Y.1
Slevin, K.2
Ohtsuki, T.3
-
4
-
-
33644962349
-
-
JPHAC5 0305-4470 10.1088/0305-4470/39/13/003
-
P. Markos and L. Schweitzer, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/39/13/003 39, 3221 (2006).
-
(2006)
J. Phys. a
, vol.39
, pp. 3221
-
-
Markos, P.1
Schweitzer, L.2
-
5
-
-
0034147774
-
-
PRPLCM 0370-1573
-
A. D. Mirlin, Phys. Rep. PRPLCM 0370-1573 326, 259 (2000).
-
(2000)
Phys. Rep.
, vol.326
, pp. 259
-
-
Mirlin, A.D.1
-
6
-
-
0037422944
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.056804
-
M. Morgenstern, J. Klijn, C. Meyer, and R. Wiesendanger, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.056804 90, 056804 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 056804
-
-
Morgenstern, M.1
Klijn, J.2
Meyer, C.3
Wiesendanger, R.4
-
7
-
-
33746620967
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.046803
-
A. D. Mirlin, Y. V. Fyodorov, A. Mildenberger, and F. Evers, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.046803 97, 046803 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 046803
-
-
Mirlin, A.D.1
Fyodorov, Y.V.2
Mildenberger, A.3
Evers, F.4
-
8
-
-
0037438667
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.67.041303
-
F. Evers, A. Mildenberger, and A. D. Mirlin, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.67.041303 67, 041303 (R) (2003).
-
(2003)
Phys. Rev. B
, vol.67
, pp. 041303
-
-
Evers, F.1
Mildenberger, A.2
Mirlin, A.D.3
-
9
-
-
0242266508
-
-
JPHAC5 0305-4470 10.1088/0305-4470/36/12/323
-
A. D. Mirlin, F. Evers, and A. Mildenberger, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/36/12/323 36, 3255 (2003).
-
(2003)
J. Phys. a
, vol.36
, pp. 3255
-
-
Mirlin, A.D.1
Evers, F.2
Mildenberger, A.3
-
10
-
-
33645325128
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.126802
-
A. R. Subramaniam, I. A. Gruzberg, A. W. W. Ludwig, F. Evers, A. Mildenberger, and A. D. Mirlin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.126802 96, 126802 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 126802
-
-
Subramaniam, A.R.1
Gruzberg, I.A.2
Ludwig, A.W.W.3
Evers, F.4
Mildenberger, A.5
Mirlin, A.D.6
-
11
-
-
0000087599
-
-
IJPBEV 0217-9792 10.1142/S021797929400049X
-
M. Janßen, Int. J. Mod. Phys. B IJPBEV 0217-9792 10.1142/S021797929400049X 8, 943 (1994).
-
(1994)
Int. J. Mod. Phys. B
, vol.8
, pp. 943
-
-
Janßen, M.1
-
13
-
-
6644222165
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.86.2094
-
R. Klesse and M. R. Zirnbauer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.2094 86, 2094 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2094
-
-
Klesse, R.1
Zirnbauer, M.R.2
-
14
-
-
33846440827
-
-
The cited value for δ0 is inconsistent with an earlier one, 0.19±0.03 (Table 1), which would appear to give a much better fit, 1/π δ0 =1.68±0.3 (Ref.). However, error bars on the earlier estimate are somewhat unclear, because it was obtained with a value Wc =5.74 that is considerably below more recent findings (Ref.), Wc =5.84±0.007. In fact, later results by Schweitzer and Zharakeshev for larger system sizes together with accounting for irrelevant scaling terms are compatible with Wc from Ref..
-
The cited value for δ0 is inconsistent with an earlier one, 0.19±0.03 (Table 1), which would appear to give a much better fit, 1/π δ0 =1.68±0.3 (Ref.). However, error bars on the earlier estimate are somewhat unclear, because it was obtained with a value Wc =5.74 that is considerably below more recent findings (Ref.), Wc =5.84±0.007. In fact, later results by Schweitzer and Zharakeshev for larger system sizes together with accounting for irrelevant scaling terms are compatible with Wc from Ref.. [L. Schweitzer and I. Zharakeshev (unpublished)].
-
-
-
Schweitzer, L.1
Zharakeshev, I.2
-
15
-
-
0000169260
-
-
JCOMEL 0953-8984 10.1088/0953-8984/7/23/001
-
L. Schweitzer, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/7/23/001 7, L281 (1995).
-
(1995)
J. Phys.: Condens. Matter
, vol.7
, pp. 281
-
-
Schweitzer, L.1
-
16
-
-
0000784603
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.40.5325
-
T. Ando, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.40.5325 40, 5325 (1989).
-
(1989)
Phys. Rev. B
, vol.40
, pp. 5325
-
-
Ando, T.1
-
17
-
-
0029349781
-
-
We employ a standard procedure [Ref.; JAPNDE 0021-4922 10.1143/JJAP.34.4361
-
We employ a standard procedure [Ref.; I. K. Zharekeshev and B. Kramer, Jpn. J. Appl. Phys., Part 1 JAPNDE 0021-4922 10.1143/JJAP.34.4361 34, 4361 (1995)] and consider the scaling of the second moment of the normalized level spacing distribution J (L,W) = (1/2) ∫0∞ ds s2 PL,W (s), where PL,W (s) denotes the probability to find an energy difference s between two consecutive eigenvalues. Our renormalization group ansatz incorporating irrelevant scaling fields is J (L,W) = J R ( L1/ν) +χ L-y J I ( L1/ν) + with (W) = W- Wc /Wc [χ (W)] being the relevant (irrelevant) variables. Results of the scaling analysis are Wc =5.85±0.025, ν=2.74±0. 12, and y=1.5±0.5. The large error of the exponents result from the uncertainty in Wc.
-
(1995)
Jpn. J. Appl. Phys., Part 1
, vol.34
, pp. 4361
-
-
Zharekeshev, I.K.1
Kramer, B.2
-
18
-
-
0037122294
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.89.256601
-
Y. Asada, K. Slevin, and T. Ohtsuki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.256601 89, 256601 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 256601
-
-
Asada, Y.1
Slevin, K.2
Ohtsuki, T.3
-
20
-
-
33846436374
-
-
RC 22038 (98932)
-
A. Gupta, M. Joshi, and V. Kumar, IBM Report No. RC 22038 (98932), 2001 (unpublished);
-
(2001)
-
-
Gupta, A.1
Joshi, M.2
Kumar, V.3
-
22
-
-
0036060795
-
-
SJMAEL 0895-4798 10.1137/S0895479899358194
-
P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L'Excellent, SIAM J. Matrix Anal. Appl. SJMAEL 0895-4798 10.1137/S0895479899358194 23, 15 (2001).
-
(2001)
SIAM J. Matrix Anal. Appl.
, vol.23
, pp. 15
-
-
Amestoy, P.R.1
Duff, I.S.2
Koster, J.3
L'Excellent, J.-Y.4
-
23
-
-
0035894343
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.64.241303
-
F. Evers, A. Mildenberger, and A. D. Mirlin, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.64.241303 64, 241303 (R) (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 241303
-
-
Evers, F.1
Mildenberger, A.2
Mirlin, A.D.3
-
24
-
-
2342443776
-
-
In recent papers [PRBMDO 0163-1829 10.1103/PhysRevB.69.125301
-
In recent papers [H. Obuse and K. Yakubo, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.69.125301 69, 125301 (2004);
-
(2004)
Phys. Rev. B
, vol.69
, pp. 125301
-
-
Obuse, H.1
Yakubo, K.2
-
25
-
-
15444378917
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.035102
-
H. Obuse and K. Yakubo, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.71.035102 71, 035102 (2005)] the width σ (L) of the distribution function P (τ2) of τ2 for different system sizes is investigated. A nonzero value in the limit of large system sizes is found, if an approximation scheme is used that assumes power law corrections to scaling, L- y. However, in reality finite size corrections to σ (L) are logarithmic rather than power law.
-
(2005)
Phys. Rev. B
, vol.71
, pp. 035102
-
-
Obuse, H.1
Yakubo, K.2
-
26
-
-
2342443776
-
-
Indeed, the published data [PRBMDO 0163-1829 10.1103/PhysRevB.69.125301
-
Indeed, the published data [Obuse and Yakubo, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.69.125301 69, 125301 (2004), Fig. 6] are consistent with a slow, logarithmic flow of σ (L) to zero in agreement with the self-averaging nature of the multifractal exponents τq and in contrast to earlier claims made in the literature
-
(2004)
Phys. Rev. B
, vol.69
, pp. 125301
-
-
Obuse1
Yakubo2
-
27
-
-
0000204508
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.83.4590
-
D. A. Parshin and H. R. Schober, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.4590 83, 4590 (1999)].
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4590
-
-
Parshin, D.A.1
Schober, H.R.2
-
28
-
-
33846425673
-
-
cond-mat/0609161 (unpublished).
-
H. Obuse, A. R. Subramaniam, A. Furusaki, I. A. Gruzberg, and A. W. W. Ludwig, cond-mat/0609161 (unpublished).
-
-
-
Obuse, H.1
Subramaniam, A.R.2
Furusaki, A.3
Gruzberg, I.A.4
Ludwig, A.W.W.5
-
29
-
-
0000524428
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.58.9767
-
K. Yakubo and M. Ono, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.58. 9767 58, 9767 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 9767
-
-
Yakubo, K.1
Ono, M.2
-
30
-
-
0001744984
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.53.6975
-
T. Kawarabayashi and T. Ohtsuki, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.53.6975 53, 6975 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 6975
-
-
Kawarabayashi, T.1
Ohtsuki, T.2
-
31
-
-
0005229983
-
-
PHYADX 0378-4371 10.1016/0378-4371(90)90053-U
-
S. N. Evangelou, Physica A PHYADX 0378-4371 10.1016/0378-4371(90)90053-U 167, 199 (1990).
-
(1990)
Physica a
, vol.167
, pp. 199
-
-
Evangelou, S.N.1
-
32
-
-
2842593915
-
-
JCOMEL 0953-8984
-
J. T. Chalker, G. J. Daniell, S. N. Evangelou, and I. H. Nahm, J. Phys.: Condens. Matter JCOMEL 0953-8984 5, 485 (1993) [index in Table 1 should be shifted: q→q+1; J. Chalker (private communication)].
-
(1993)
J. Phys.: Condens. Matter
, vol.5
, pp. 485
-
-
Chalker, J.T.1
Daniell, G.J.2
Evangelou, S.N.3
Nahm, I.H.4
Chalker, J.5
-
33
-
-
0000030744
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.58.4394
-
R. Merkt, M. Janssen, and B. Huckestein, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.58.4394 58, 4394 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 4394
-
-
Merkt, R.1
Janssen, M.2
Huckestein, B.3
-
34
-
-
0000804014
-
-
JPSOAW 0022-3719 10.1088/0022-3719/20/13/004
-
S. N. Evangelou and T. Ziman, J. Phys. C JPSOAW 0022-3719 10.1088/0022-3719/20/13/004 20, L235 (1987).
-
(1987)
J. Phys. C
, vol.20
, pp. 235
-
-
Evangelou, S.N.1
Ziman, T.2
|