-
2
-
-
0036867930
-
Preconditioning techniques for large linear systems: A survey
-
Benzi, M. (2002): Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics, vol. 182, pp. 418-477.
-
(2002)
Journal of Computational Physics
, vol.182
, pp. 418-477
-
-
Benzi, M.1
-
3
-
-
0004675411
-
A sparse approximate inverse preconditioner for the conjugate gradient method
-
Benzi, M.; Meyer, C.; Tuma, M. (1996): A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput., vol. 17, pp. 1135-1149.
-
(1996)
SIAM J. Sci. Comput
, vol.17
, pp. 1135-1149
-
-
Benzi, M.1
Meyer, C.2
Tuma, M.3
-
5
-
-
0013255139
-
Parallel matrix techniques
-
Papailiou, K, Tsahalis, D, Periaux, J, Hirsch, C, Pandolfi, M.Eds, Wiley
-
Gravvanis, G. (1998): Parallel matrix techniques. In Papailiou, K.; Tsahalis, D.; Periaux, J.; Hirsch, C.; Pandolfi, M.(Eds): Computational Fluid Dynamics, volume I, pp. 472-477. Wiley.
-
(1998)
Computational Fluid Dynamics
, vol.1
, pp. 472-477
-
-
Gravvanis, G.1
-
6
-
-
0036989839
-
Explicit Approximate Inverse Preconditioning Techniques
-
Gravvanis, G. (2002): Explicit Approximate Inverse Preconditioning Techniques. Archives of Computational Methods in Engineering, vol. 9(4), pp. 371-402.
-
(2002)
Archives of Computational Methods in Engineering
, vol.9
, Issue.4
, pp. 371-402
-
-
Gravvanis, G.1
-
8
-
-
4444228817
-
On the rate of convergence and computational complexity of normalized implicit preconditioning for solving finite difference equations in three space variables
-
Gravvanis, G.; Giannoutakis, K. (2004): On the rate of convergence and computational complexity of normalized implicit preconditioning for solving finite difference equations in three space variables. I. J. of Computational Methods, vol. 1(2), pp. 367-386.
-
(2004)
I. J. of Computational Methods
, vol.1
, Issue.2
, pp. 367-386
-
-
Gravvanis, G.1
Giannoutakis, K.2
-
9
-
-
33645243630
-
Normalized implicit preconditioned methods based on normalized finite element approximate factorization procedures
-
K.J.BatheEd, Elsevier
-
Gravvanis, G.; Giannoutakis, K. (2005): Normalized implicit preconditioned methods based on normalized finite element approximate factorization procedures. In K.J.Bathe(Ed): Computational Fluid and Solid Mechanics 2005, volume 2, pp. 1115-1119. Elsevier.
-
(2005)
Computational Fluid and Solid Mechanics 2005
, vol.2
, pp. 1115-1119
-
-
Gravvanis, G.1
Giannoutakis, K.2
-
11
-
-
0031129197
-
Parallel preconditioning with sparse approximate inverses
-
Grote, M.; Huckle, T. (1997): Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput., vol. 18, pp. 838-853.
-
(1997)
SIAM J. Sci. Comput
, vol.18
, pp. 838-853
-
-
Grote, M.1
Huckle, T.2
-
12
-
-
0033149565
-
Approximate sparsity patterns for the inverse of a matrix and preconditioning
-
Huckle, T. (1999): Approximate sparsity patterns for the inverse of a matrix and preconditioning. Applied Numerical Mathematics, vol. 30, pp. 291-303.
-
(1999)
Applied Numerical Mathematics
, vol.30
, pp. 291-303
-
-
Huckle, T.1
-
13
-
-
0021408223
-
Solving linear finite element systems by normalized approximate matrix factorization semi-direct methods
-
Lipitakis, E.; Evans, D. (1984): Solving linear finite element systems by normalized approximate matrix factorization semi-direct methods. Computer Methods in Applied Mechanics & Engineering, vol. 43, pp. 1-19.
-
(1984)
Computer Methods in Applied Mechanics & Engineering
, vol.43
, pp. 1-19
-
-
Lipitakis, E.1
Evans, D.2
-
17
-
-
0039179703
-
Iterative solution of linear systems in the 20th century
-
Saad, Y.; van der Vorst, H. (2000): Iterative solution of linear systems in the 20th century. J. Comp. Applied Math, Vol. 123, pp. 1-33.
-
(2000)
J. Comp. Applied Math
, vol.123
, pp. 1-33
-
-
Saad, Y.1
van der Vorst, H.2
-
18
-
-
0002716985
-
High performance preconditioning
-
van der Vorst, H. (1989): High performance preconditioning. SIAM J. Sci. Stat. Comput., vol. 10, pp. 1174-1185.
-
(1989)
SIAM J. Sci. Stat. Comput
, vol.10
, pp. 1174-1185
-
-
van der Vorst, H.1
|