-
1
-
-
0004001162
-
-
edited by D. Pines, R. Tamagaki, and S. Tsuruta (Addison-Wesley, New York
-
The Structure and Evolution of Neutron Stars, edited by, D. Pines, R. Tamagaki, and, S. Tsuruta, (Addison-Wesley, New York, 1992).
-
(1992)
The Structure and Evolution of Neutron Stars
-
-
-
3
-
-
0043234736
-
-
MNRAA4 0035-8711 10.1046/j.1365-8711.2002.05439.x
-
M. B. Larson and B. Link, Mon. Not. R. Astron. Soc. MNRAA4 0035-8711 10.1046/j.1365-8711.2002.05439.x 333, 613 (2001);
-
(2001)
Mon. Not. R. Astron. Soc.
, vol.333
, pp. 613
-
-
Larson, M.B.1
Link, B.2
-
4
-
-
0042867304
-
-
MNRAA4 0035-8711 10.1046/j.1365-8711.2002.05726.x
-
B. Link and C. Cutler, Mon. Not. R. Astron. Soc. MNRAA4 0035-8711 10.1046/j.1365-8711.2002.05726.x 336, 211 (2002);
-
(2002)
Mon. Not. R. Astron. Soc.
, vol.336
, pp. 211
-
-
Link, B.1
Cutler, C.2
-
5
-
-
0039896058
-
-
ASJOAB 0004-637X 10.1086/323884
-
M. Hirasawa and N. Shibazaki, Astrophys. J. ASJOAB 0004-637X 10.1086/323884 563, 267 (2001);
-
(2001)
Astrophys. J.
, vol.563
, pp. 267
-
-
Hirasawa, M.1
Shibazaki, N.2
-
6
-
-
4243995493
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.79.792
-
P. B. Jones, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.79.792 79, 792 (1997);
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 792
-
-
Jones, P.B.1
-
7
-
-
4243911615
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.4560
-
P. B. Jones, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81. 4560 81, 4560 (1998);
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4560
-
-
Jones, P.B.1
-
9
-
-
0000906246
-
-
1365-8711 10.1046/j.1365-8711.1998.01464.x
-
P. B. Jones, Mon. Not. R. Astron. Soc. 1365-8711 10.1046/j.1365-8711. 1998.01464.x 296, 217 (1998).
-
(1998)
Mon. Not. R. Astron. Soc.
, vol.296
, pp. 217
-
-
Jones, P.B.1
-
10
-
-
0142089111
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.101101
-
B. Link, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.101101 91, 101101 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 101101
-
-
Link, B.1
-
11
-
-
0000273019
-
-
ASJOAB 0004-637X 10.1086/166325
-
R. I. Epstein and G. Baym, Astrophys. J. ASJOAB 0004-637X 10.1086/166325 328, 680 (1988).
-
(1988)
Astrophys. J.
, vol.328
, pp. 680
-
-
Epstein, R.I.1
Baym, G.2
-
12
-
-
0006942508
-
-
PRLTAO. 0031-9007. 10.1103/PhysRevLett.82.1815
-
F. V. De Blasio and Ø. Elgaroy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.82.1815 82, 1815 (1999);
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 1815
-
-
De Blasio, F.V.1
Elgaroy Ø2
-
13
-
-
0035325612
-
-
AAEJAF. 0004-6361. 10.1051/0004-6361:20010160
-
Ø. Elgaroy and F. V. De Blasio, Astron. Astrophys. AAEJAF 0004-6361 10.1051/0004-6361:20010160 370, 939 (2001).
-
(2001)
Astron. Astrophys.
, vol.370
, pp. 939
-
-
Elgaroy Ø1
De Blasio, F.V.2
-
14
-
-
0001424136
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.79.3347
-
P. M. Pizzochero, L. Viverit, and R. A. Broglia, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.79.3347 79, 3347 (1997);
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3347
-
-
Viverit, P.L.1
Broglia, P.M.R.A.2
-
15
-
-
4444338183
-
-
NUPABL 0375-9474 10.1016/j.nuclphysa.2004.07.002
-
P. Donati and P. M. Pizzochero, Nucl. Phys. NUPABL 0375-9474 10.1016/j.nuclphysa.2004.07.002 A742, 363 (2004).
-
(2004)
Nucl. Phys.
, vol.742
, pp. 363
-
-
Donati, P.1
Pizzochero, P.M.2
-
16
-
-
28844469445
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.192501
-
A. Fabrocini, S. Fantoni, A. Yu. Illarionov, and K. E. Schmidt, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.192501 95, 192501 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 192501
-
-
Fabrocini, A.1
Fantoni, S.2
Yu. Illarionov, A.3
Schmidt, K.E.4
-
18
-
-
4244100621
-
-
PRVCAN 0556-2813 10.1103/PhysRevC.5.626
-
D. Vautherin and D. M. Brink, Phys. Rev. C PRVCAN 0556-2813 10.1103/PhysRevC.5.626 5, 626 (1972).
-
(1972)
Phys. Rev. C
, vol.5
, pp. 626
-
-
Vautherin, D.1
Brink, D.M.2
-
19
-
-
13044263111
-
-
PRVCAN 0556-2813 10.1103/PhysRevC.60.064312
-
E. Garrido, P. Sarriguren, E. Moya de Guerra, and P. Schuck, Phys. Rev. C PRVCAN 0556-2813 10.1103/PhysRevC.60.064312 60, 064312 (1999).
-
(1999)
Phys. Rev. C
, vol.60
, pp. 064312
-
-
Garrido, E.1
Sarriguren, P.2
Moya De Guerra, E.3
Schuck, P.4
-
20
-
-
0001501182
-
-
NUPABL 0375-9474 10.1016/0375-9474(73)90349-7
-
J. W. Negele and D. Vautherin, Nucl. Phys. NUPABL 0375-9474 10.1016/0375-9474(73)90349-7 A207, 298 (1973).
-
(1973)
Nucl. Phys.
, vol.207
, pp. 298
-
-
Negele, J.W.1
Vautherin, D.2
-
21
-
-
0037527541
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.161101
-
Y. Yu and A. Bulgac, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.161101 90, 161101 (2003). We have checked that we reproduce the results found in this reference if we scale the strength of our pairing interaction to have the same asymptotic value of the pairing gap (cf. also Ref. [5]).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 161101
-
-
Yu, Y.1
Bulgac, A.2
-
22
-
-
33846363078
-
-
The spin orbit interaction will not significantly change the phase space density relevant for vortex formation, because it shifts the partners of the ν=1 Cooper pairs by about the same amount.
-
The spin orbit interaction will not significantly change the phase space density relevant for vortex formation, because it shifts the partners of the ν=1 Cooper pairs by about the same amount.
-
-
-
-
23
-
-
33846385864
-
-
The energy cost to create a vortex depends linearly on the height of the cylindrical box used for the calculation and shows a logarithmic divergence with respect to the radius of the box. We have verified that our results obey this geometrical scaling. Such dependences, however, disappear when we consider the pinning energy. We have verified that the value of the pinning energy, although obtained from the subtraction of large numbers, is remarkably stable with respect to changes in the box size for sufficiently large boxes. We have evaluated the error associated with the finite mesh size used in integrating these equations (Δρ=Δz=0.25 fm), and we estimate that the absolute value of the error associated with this quantity is less than 2 MeV.
-
The energy cost to create a vortex depends linearly on the height of the cylindrical box used for the calculation and shows a logarithmic divergence with respect to the radius of the box. We have verified that our results obey this geometrical scaling. Such dependences, however, disappear when we consider the pinning energy. We have verified that the value of the pinning energy, although obtained from the subtraction of large numbers, is remarkably stable with respect to changes in the box size for sufficiently large boxes. We have evaluated the error associated with the finite mesh size used in integrating these equations (Δρ=Δz=0.25 fm), and we estimate that the absolute value of the error associated with this quantity is less than 2 MeV.
-
-
-
-
24
-
-
0000187665
-
-
ASJOAB 0004-637X 10.1086/168063
-
M. A. Alpar, Astrophys. J. ASJOAB 0004-637X 10.1086/168063 346, 823 (1989).
-
(1989)
Astrophys. J.
, vol.346
, pp. 823
-
-
Alpar, M.A.1
-
25
-
-
33846354427
-
-
The energy Eflow is obtained integrating the associated kinetic energy density (1/2)Φ2/n, where Φ is the vortex flow, Φ=/ mαVα2(ρ,z)(lα-ν). The condensation energy Econd is obtained by integrating the density -(3/8)n(ρ,z)Δ2(ρ,z)/[EF- V(ρ,z)].
-
The energy Eflow is obtained integrating the associated kinetic energy density (1/2)Φ2/n, where Φ is the vortex flow, Φ=/ mαVα2(ρ,z)(lα-ν). The condensation energy Econd is obtained by integrating the density -(3/8)n(ρ,z)Δ2(ρ,z)/[EF- V(ρ,z)].
-
-
-
|