메뉴 건너뛰기




Volumn 33, Issue , 2007, Pages 249-273

Effective and reliable online classification combining XCS with EDA mechanisms

Author keywords

Bayesian networks; Classification; Decomposable problems; Evolutionary computation; Gradient descent; Hierarchical problem solving; Learning classifier systems; Reinforcement learning; Scalability

Indexed keywords


EID: 33846266187     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-34954-9_11     Document Type: Article
Times cited : (2)

References (42)
  • 1
    • 84949196940 scopus 로고    scopus 로고
    • XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks
    • In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Springer, Berlin Heidelberg New York
    • Bernadó, E., Llorà, X., and Garrell, J. M. (2002). XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Advances in Learning Classifier Systems (LNAI 2321), pp. 115-132. Springer, Berlin Heidelberg New York
    • (2002) Advances in Learning Classifier Systems (LNAI 2321) , pp. 115-132
    • Bernadó, E.1    Llorà, X.2    Garrell, J.M.3
  • 2
    • 0043284115 scopus 로고    scopus 로고
    • Accuracy-based learning classifier systems: Models, analysis, and applications to classification tasks
    • Bernadó-Mansilla, E. and Garrell-Guiu, J. M. (2003). Accuracy-based learning classifier systems: Models, analysis, and applications to classification tasks. Evolutionary Computation, 11:209-238
    • (2003) Evolutionary Computation , vol.11 , pp. 209-238
    • Bernadó-Mansilla, E.1    Garrell-Guiu, J.M.2
  • 3
    • 27144439968 scopus 로고    scopus 로고
    • Rule-based evolutionary online learning systems: Learning bounds, classification, and prediction
    • PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL
    • Butz, M. V. (2004). Rule-based evolutionary online learning systems: Learning bounds, classification, and prediction. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL
    • (2004)
    • Butz, M.V.1
  • 4
    • 32444433740 scopus 로고    scopus 로고
    • Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system
    • Butz, M. V. (2005a). Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system. GECCO 2005: Genetic and Evolutionary Computation Conference: Vol. 2, pp. 1835-1842
    • (2005) GECCO 2005: Genetic and Evolutionary Computation Conference , vol.2 , pp. 1835-1842
    • Butz, M.V.1
  • 5
    • 33750739321 scopus 로고    scopus 로고
    • Rule-based evolutionary online learning systems: A principled approach to LCS analysis and design
    • Springer, Berlin Heidelberg New York
    • Butz, M. V. (2005b). Rule-based evolutionary online learning systems: A principled approach to LCS analysis and design. Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg New York
    • (2005) Studies in Fuzziness and Soft Computing
    • Butz, M.V.1
  • 6
    • 33846329869 scopus 로고    scopus 로고
    • Hierarchical classification problems demand effective building block identification and processing in LCSs
    • IlliGAL report 2004017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • Butz, M. V. and Goldberg, D. E. (2004). Hierarchical classification problems demand effective building block identification and processing in LCSs. IlliGAL report 2004017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • (2004)
    • Butz, M.V.1    Goldberg, D.E.2
  • 8
    • 23144448210 scopus 로고    scopus 로고
    • The anticipatory classifier system and genetic generalization
    • Butz, M. V., Goldberg, D. E., and Stolzmann, W. (2002). The anticipatory classifier system and genetic generalization. Natural Computing, 1:427-467
    • (2002) Natural Computing , vol.1 , pp. 427-467
    • Butz, M.V.1    Goldberg, D.E.2    Stolzmann, W.3
  • 9
    • 0041780883 scopus 로고    scopus 로고
    • Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy
    • Butz, M. V., Goldberg, D. E., and Tharakunnel, K. (2003a). Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation, 11:239-277
    • (2003) Evolutionary Computation , vol.11 , pp. 239-277
    • Butz, M.V.1    Goldberg, D.E.2    Tharakunnel, K.3
  • 13
    • 14844347370 scopus 로고    scopus 로고
    • Strong, stable, and reliable fitness pressure in XCS due to tournament selection
    • Butz, M. V., Sastry, K., and Goldberg, D. E. (2004b). Strong, stable, and reliable fitness pressure in XCS due to tournament selection. Genetic Programming and Evolvable Machines, 6:53-77
    • (2004) Genetic Programming and Evolvable Machines , vol.6 , pp. 53-77
    • Butz, M.V.1    Sastry, K.2    Goldberg, D.E.3
  • 15
    • 0011843617 scopus 로고    scopus 로고
    • A Bayesian approach to learning Bayesian networks with local structure
    • Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
    • Chickering, D. M., Heckerman, D., and Meek, C. (1997). A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
    • (1997)
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 16
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F. and Herskovits, E. H. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.H.2
  • 18
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • In Jordan, M. I., (Ed.), MIT, Cambridge, MA
    • Friedman, N. and Goldszmidt, M. (1999). Learning Bayesian networks with local structure. In Jordan, M. I., (Ed.), Graphical models, pp. 421-459. MIT, Cambridge, MA
    • (1999) Graphical Models , pp. 421-459
    • Friedman, N.1    Goldszmidt, M.2
  • 22
    • 0003738581 scopus 로고    scopus 로고
    • Linkage learning via probabilistic modeling in the ECGA
    • IlliGAL report 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL report 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • (1999)
    • Harik, G.1
  • 23
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
    • Heckerman, D., Geiger, D., and Chickering, D. M. (1994). Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
    • (1994)
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 24
    • 0000086731 scopus 로고
    • Influence diagrams
    • In Howard, R. A. and Matheson, J. E., (Eds.), Strategic Decisions Group, Menlo Park, CA
    • Howard, R. A. and Matheson, J. E. (1981). Influence diagrams. In Howard, R. A. and Matheson, J. E., (Eds.), Readings on the Principles and Applications of Decision Analysis, Vol. 2, pp. 721-762. Strategic Decisions Group, Menlo Park, CA
    • (1981) Readings on the Principles and Applications of Decision Analysis , vol.2 , pp. 721-762
    • Howard, R.A.1    Matheson, J.E.2
  • 25
    • 0004199321 scopus 로고    scopus 로고
    • Evolving optimal populations with XCS classifier systems
    • Master's thesis, School of Computer Science, University of Birmingham, Birmingham, UK
    • Kovacs, T. (1996). Evolving optimal populations with XCS classifier systems. Master's thesis, School of Computer Science, University of Birmingham, Birmingham, UK
    • (1996)
    • Kovacs, T.1
  • 26
    • 0042142968 scopus 로고    scopus 로고
    • XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions
    • In Roy, Chawdhry, and Pant, (Eds.), Springer, London Berlin Heidelberg New York
    • Kovacs, T. (1997). XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions. In Roy, Chawdhry, and Pant, (Eds.), Soft Computing in Engineering Design and Manufacturing, pp. 59-68. Springer, London Berlin Heidelberg New York
    • (1997) Soft Computing in Engineering Design and Manufacturing , pp. 59-68
    • Kovacs, T.1
  • 27
    • 0001167553 scopus 로고    scopus 로고
    • Strength or Accuracy? Fitness calculation in learning classifier systems
    • In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Springer, Berlin Heidelberg New York
    • Kovacs, T. (2000). Strength or Accuracy? Fitness calculation in learning classifier systems. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Learning Classifier Systems: From Foundations to Applications (LNAI 1813), pp. 143-160. Springer, Berlin Heidelberg New York
    • (2000) Learning Classifier Systems: From Foundations to Applications (LNAI 1813) , pp. 143-160
    • Kovacs, T.1
  • 28
    • 0042142967 scopus 로고    scopus 로고
    • Towards a theory of strong overgeneral classifiers
    • Kovacs, T. (2001). Towards a theory of strong overgeneral classifiers. Foundations of Genetic Algorithms 6, pp. 165-184
    • (2001) Foundations of Genetic Algorithms , vol.6 , pp. 165-184
    • Kovacs, T.1
  • 29
    • 32444445337 scopus 로고    scopus 로고
    • Extended compact genetic algorithm in C++
    • IlliGAL report 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • Lobo, F. and Harik, G. (1999). Extended compact genetic algorithm in C++. IlliGAL report 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • (1999)
    • Lobo, F.1    Harik, G.2
  • 30
    • 0002091030 scopus 로고
    • How genetic algorithms really work: I.Mutation and Hillclimbing
    • In Männer, R. and Manderick, B., (Eds.), Elsevier, Amsterdam Netherlands
    • Mühlenbein, H. (1992). How genetic algorithms really work: I.Mutation and Hillclimbing. In Männer, R. and Manderick, B., (Eds.), Parallel Problem Solving from Nature, pp. 15-25, Elsevier, Amsterdam Netherlands
    • (1992) Parallel Problem Solving from Nature , pp. 15-25
    • Mühlenbein, H.1
  • 31
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto
    • Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto
    • (1993)
    • Neal, R.M.1
  • 34
    • 0011801192 scopus 로고    scopus 로고
    • Bayesian optimization algorithm: From single level to hierarchy
    • PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report No. 2002023
    • Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report No. 2002023
    • (2002)
    • Pelikan, M.1
  • 36
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461-464
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 39
    • 0002447833 scopus 로고
    • ZCS: A zeroth-level classifier system
    • Wilson, S. W. (1994). ZCS: A zeroth-level classifier system. Evolutionary Computation, 2:1-18
    • (1994) Evolutionary Computation , vol.2 , pp. 1-18
    • Wilson, S.W.1
  • 40
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149-175
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.