-
1
-
-
84949196940
-
XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks
-
In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Springer, Berlin Heidelberg New York
-
Bernadó, E., Llorà, X., and Garrell, J. M. (2002). XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Advances in Learning Classifier Systems (LNAI 2321), pp. 115-132. Springer, Berlin Heidelberg New York
-
(2002)
Advances in Learning Classifier Systems (LNAI 2321)
, pp. 115-132
-
-
Bernadó, E.1
Llorà, X.2
Garrell, J.M.3
-
2
-
-
0043284115
-
Accuracy-based learning classifier systems: Models, analysis, and applications to classification tasks
-
Bernadó-Mansilla, E. and Garrell-Guiu, J. M. (2003). Accuracy-based learning classifier systems: Models, analysis, and applications to classification tasks. Evolutionary Computation, 11:209-238
-
(2003)
Evolutionary Computation
, vol.11
, pp. 209-238
-
-
Bernadó-Mansilla, E.1
Garrell-Guiu, J.M.2
-
3
-
-
27144439968
-
Rule-based evolutionary online learning systems: Learning bounds, classification, and prediction
-
PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL
-
Butz, M. V. (2004). Rule-based evolutionary online learning systems: Learning bounds, classification, and prediction. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL
-
(2004)
-
-
Butz, M.V.1
-
4
-
-
32444433740
-
Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system
-
Butz, M. V. (2005a). Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system. GECCO 2005: Genetic and Evolutionary Computation Conference: Vol. 2, pp. 1835-1842
-
(2005)
GECCO 2005: Genetic and Evolutionary Computation Conference
, vol.2
, pp. 1835-1842
-
-
Butz, M.V.1
-
5
-
-
33750739321
-
Rule-based evolutionary online learning systems: A principled approach to LCS analysis and design
-
Springer, Berlin Heidelberg New York
-
Butz, M. V. (2005b). Rule-based evolutionary online learning systems: A principled approach to LCS analysis and design. Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg New York
-
(2005)
Studies in Fuzziness and Soft Computing
-
-
Butz, M.V.1
-
6
-
-
33846329869
-
Hierarchical classification problems demand effective building block identification and processing in LCSs
-
IlliGAL report 2004017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
-
Butz, M. V. and Goldberg, D. E. (2004). Hierarchical classification problems demand effective building block identification and processing in LCSs. IlliGAL report 2004017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
-
(2004)
-
-
Butz, M.V.1
Goldberg, D.E.2
-
7
-
-
27144439387
-
-
Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg New York
-
Butz, M. V., Goldberg, D. E., and Lanzi, P. L. (2005). Foundations of Learning Classifier Systems, Computational Complexity of the XCS Classifier System, pp. 91-126. Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg New York
-
(2005)
Foundations of Learning Classifier Systems, Computational Complexity of the XCS Classifier System
, pp. 91-126
-
-
Butz, M.V.1
Goldberg, D.E.2
Lanzi, P.L.3
-
8
-
-
23144448210
-
The anticipatory classifier system and genetic generalization
-
Butz, M. V., Goldberg, D. E., and Stolzmann, W. (2002). The anticipatory classifier system and genetic generalization. Natural Computing, 1:427-467
-
(2002)
Natural Computing
, vol.1
, pp. 427-467
-
-
Butz, M.V.1
Goldberg, D.E.2
Stolzmann, W.3
-
9
-
-
0041780883
-
Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy
-
Butz, M. V., Goldberg, D. E., and Tharakunnel, K. (2003a). Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation, 11:239-277
-
(2003)
Evolutionary Computation
, vol.11
, pp. 239-277
-
-
Butz, M.V.1
Goldberg, D.E.2
Tharakunnel, K.3
-
10
-
-
0042142970
-
How XCS evolves accurate classifiers
-
Butz, M. V., Kovacs, T., Lanzi, P. L., and Wilson, S. W. (2001). How XCS evolves accurate classifiers. Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 927-934
-
(2001)
Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001)
, pp. 927-934
-
-
Butz, M.V.1
Kovacs, T.2
Lanzi, P.L.3
Wilson, S.W.4
-
11
-
-
1542376540
-
Toward a theory of generalization and learning in XCS
-
Butz, M. V., Kovacs, T., Lanzi, P. L., and Wilson, S. W. (2004a). Toward a theory of generalization and learning in XCS. IEEE Transactions on Evolutionary Computation, 8:28-46
-
(2004)
IEEE Transactions on Evolutionary Computation
, vol.8
, pp. 28-46
-
-
Butz, M.V.1
Kovacs, T.2
Lanzi, P.L.3
Wilson, S.W.4
-
12
-
-
35248882041
-
Tournament selection in XCS
-
Butz, M. V., Sastry, K., and Goldberg, D. E. (2003b). Tournament selection in XCS. Proceedings of the Fifth Genetic and Evolutionary Computation Conference (GECCO-2003), pp. 1857-1869
-
(2003)
Proceedings of the Fifth Genetic and Evolutionary Computation Conference (GECCO-2003)
, pp. 1857-1869
-
-
Butz, M.V.1
Sastry, K.2
Goldberg, D.E.3
-
13
-
-
14844347370
-
Strong, stable, and reliable fitness pressure in XCS due to tournament selection
-
Butz, M. V., Sastry, K., and Goldberg, D. E. (2004b). Strong, stable, and reliable fitness pressure in XCS due to tournament selection. Genetic Programming and Evolvable Machines, 6:53-77
-
(2004)
Genetic Programming and Evolvable Machines
, vol.6
, pp. 53-77
-
-
Butz, M.V.1
Sastry, K.2
Goldberg, D.E.3
-
14
-
-
84942854203
-
An algorithmic description of XCS
-
In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Springer, Berlin Heidelberg New York
-
Butz, M. V. and Wilson, S. W. (2001). An algorithmic description of XCS. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000 (LNAI 1996), pp. 253-272. Springer, Berlin Heidelberg New York
-
(2001)
Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000 (LNAI 1996)
, pp. 253-272
-
-
Butz, M.V.1
Wilson, S.W.2
-
15
-
-
0011843617
-
A Bayesian approach to learning Bayesian networks with local structure
-
Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
-
Chickering, D. M., Heckerman, D., and Meek, C. (1997). A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
-
(1997)
-
-
Chickering, D.M.1
Heckerman, D.2
Meek, C.3
-
16
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F. and Herskovits, E. H. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309-347
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.H.2
-
18
-
-
0000220520
-
Learning Bayesian networks with local structure
-
In Jordan, M. I., (Ed.), MIT, Cambridge, MA
-
Friedman, N. and Goldszmidt, M. (1999). Learning Bayesian networks with local structure. In Jordan, M. I., (Ed.), Graphical models, pp. 421-459. MIT, Cambridge, MA
-
(1999)
Graphical Models
, pp. 421-459
-
-
Friedman, N.1
Goldszmidt, M.2
-
22
-
-
0003738581
-
Linkage learning via probabilistic modeling in the ECGA
-
IlliGAL report 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
-
Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL report 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
-
(1999)
-
-
Harik, G.1
-
23
-
-
0003846045
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
-
Heckerman, D., Geiger, D., and Chickering, D. M. (1994). Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
-
(1994)
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
24
-
-
0000086731
-
Influence diagrams
-
In Howard, R. A. and Matheson, J. E., (Eds.), Strategic Decisions Group, Menlo Park, CA
-
Howard, R. A. and Matheson, J. E. (1981). Influence diagrams. In Howard, R. A. and Matheson, J. E., (Eds.), Readings on the Principles and Applications of Decision Analysis, Vol. 2, pp. 721-762. Strategic Decisions Group, Menlo Park, CA
-
(1981)
Readings on the Principles and Applications of Decision Analysis
, vol.2
, pp. 721-762
-
-
Howard, R.A.1
Matheson, J.E.2
-
25
-
-
0004199321
-
Evolving optimal populations with XCS classifier systems
-
Master's thesis, School of Computer Science, University of Birmingham, Birmingham, UK
-
Kovacs, T. (1996). Evolving optimal populations with XCS classifier systems. Master's thesis, School of Computer Science, University of Birmingham, Birmingham, UK
-
(1996)
-
-
Kovacs, T.1
-
26
-
-
0042142968
-
XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions
-
In Roy, Chawdhry, and Pant, (Eds.), Springer, London Berlin Heidelberg New York
-
Kovacs, T. (1997). XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions. In Roy, Chawdhry, and Pant, (Eds.), Soft Computing in Engineering Design and Manufacturing, pp. 59-68. Springer, London Berlin Heidelberg New York
-
(1997)
Soft Computing in Engineering Design and Manufacturing
, pp. 59-68
-
-
Kovacs, T.1
-
27
-
-
0001167553
-
Strength or Accuracy? Fitness calculation in learning classifier systems
-
In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Springer, Berlin Heidelberg New York
-
Kovacs, T. (2000). Strength or Accuracy? Fitness calculation in learning classifier systems. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Learning Classifier Systems: From Foundations to Applications (LNAI 1813), pp. 143-160. Springer, Berlin Heidelberg New York
-
(2000)
Learning Classifier Systems: From Foundations to Applications (LNAI 1813)
, pp. 143-160
-
-
Kovacs, T.1
-
28
-
-
0042142967
-
Towards a theory of strong overgeneral classifiers
-
Kovacs, T. (2001). Towards a theory of strong overgeneral classifiers. Foundations of Genetic Algorithms 6, pp. 165-184
-
(2001)
Foundations of Genetic Algorithms
, vol.6
, pp. 165-184
-
-
Kovacs, T.1
-
29
-
-
32444445337
-
Extended compact genetic algorithm in C++
-
IlliGAL report 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
-
Lobo, F. and Harik, G. (1999). Extended compact genetic algorithm in C++. IlliGAL report 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
-
(1999)
-
-
Lobo, F.1
Harik, G.2
-
30
-
-
0002091030
-
How genetic algorithms really work: I.Mutation and Hillclimbing
-
In Männer, R. and Manderick, B., (Eds.), Elsevier, Amsterdam Netherlands
-
Mühlenbein, H. (1992). How genetic algorithms really work: I.Mutation and Hillclimbing. In Männer, R. and Manderick, B., (Eds.), Parallel Problem Solving from Nature, pp. 15-25, Elsevier, Amsterdam Netherlands
-
(1992)
Parallel Problem Solving from Nature
, pp. 15-25
-
-
Mühlenbein, H.1
-
31
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods
-
Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto
-
Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto
-
(1993)
-
-
Neal, R.M.1
-
34
-
-
0011801192
-
Bayesian optimization algorithm: From single level to hierarchy
-
PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report No. 2002023
-
Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report No. 2002023
-
(2002)
-
-
Pelikan, M.1
-
35
-
-
0001171707
-
BOA: The Bayesian optimization algorithm
-
Pelikan, M., Goldberg, D. E., and Cantu-Paz, E. (1999). BOA: The Bayesian optimization algorithm. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pp. 525-532
-
(1999)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99)
, pp. 525-532
-
-
Pelikan, M.1
Goldberg, D.E.2
Cantu-Paz, E.3
-
36
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461-464
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
39
-
-
0002447833
-
ZCS: A zeroth-level classifier system
-
Wilson, S. W. (1994). ZCS: A zeroth-level classifier system. Evolutionary Computation, 2:1-18
-
(1994)
Evolutionary Computation
, vol.2
, pp. 1-18
-
-
Wilson, S.W.1
-
40
-
-
0001387704
-
Classifier fitness based on accuracy
-
Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149-175
-
(1995)
Evolutionary Computation
, vol.3
, Issue.2
, pp. 149-175
-
-
Wilson, S.W.1
-
42
-
-
84942897286
-
Mining oblique data with XCS
-
In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Springer, Berlin Heidelberg New York
-
Wilson, S. W. (2001). Mining oblique data with XCS. In Lanzi, P. L., Stolzmann, W., and Wilson, S. W., (Eds.), Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000 (LNAI 1996), pp. 158-174. Springer, Berlin Heidelberg New York
-
(2001)
Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000 (LNAI 1996)
, pp. 158-174
-
-
Wilson, S.W.1
|