메뉴 건너뛰기




Volumn 17, Issue 4, 2006, Pages 417-433

On matrix differential equations with several unbounded delays

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33846223945     PISSN: 09567925     EISSN: 14694425     Source Type: Journal    
DOI: 10.1017/S0956792506006590     Document Type: Article
Times cited : (9)

References (25)
  • 1
    • 0011447127 scopus 로고
    • On the fluctuation of the brightness of the Milky Way
    • AMBARTSUMIAN, V. A. (1944) On the fluctuation of the brightness of the Milky Way. Doklady Akad. Nauk USSR 44, 223-226.
    • (1944) Doklady Akad. Nauk USSR , vol.44 , pp. 223-226
    • AMBARTSUMIAN, V.A.1
  • 2
    • 33846191817 scopus 로고    scopus 로고
    • BEREKETOGLU, H. & PITUK, M. (2003) Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays. Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst., suppl., 100-107.
    • BEREKETOGLU, H. & PITUK, M. (2003) Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays. Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst., suppl., 100-107.
  • 3
    • 0002879915 scopus 로고
    • The matrix functional differential equation y′(x) = A(λx) + By(x)
    • CARR, J. & DYSON, J. (1975/76) The matrix functional differential equation y′(x) = A(λx) + By(x). Proc. Royal Soc. Edinburgh 75A (2), 5-22.
    • (1975) Proc. Royal Soc. Edinburgh , vol.75 A , Issue.2 , pp. 5-22
    • CARR, J.1    DYSON, J.2
  • 4
    • 33846214954 scopus 로고
    • Note on simultaneous solutions of a system of Schröder's equations
    • ČERMÁK, J. (1995) Note on simultaneous solutions of a system of Schröder's equations. Math. Bohemica 120, 225-236.
    • (1995) Math. Bohemica , vol.120 , pp. 225-236
    • ČERMÁK, J.1
  • 5
    • 29444435543 scopus 로고    scopus 로고
    • The Abel equation in the asymptotic theory of functional differential equations
    • ČERMÁK, J. (2002) The Abel equation in the asymptotic theory of functional differential equations. Aequationes Math. 64, 89-103.
    • (2002) Aequationes Math , vol.64 , pp. 89-103
    • ČERMÁK, J.1
  • 6
    • 0036608316 scopus 로고    scopus 로고
    • A change of variables in the asymptotic theory of differential equations with unbounded delays
    • ČERMÁK, J. (2002) A change of variables in the asymptotic theory of differential equations with unbounded delays. J. Comp. Appl. Math. 143, 81-93.
    • (2002) J. Comp. Appl. Math , vol.143 , pp. 81-93
    • ČERMÁK, J.1
  • 7
    • 0000099970 scopus 로고
    • Functional-differential equations with compressed arguments and polynomial coefficients: Asymptotics of the solutions
    • DERFEL, G. (1995) Functional-differential equations with compressed arguments and polynomial coefficients: Asymptotics of the solutions. J. Math. Anal. Appl. 193, 671-679.
    • (1995) J. Math. Anal. Appl , vol.193 , pp. 671-679
    • DERFEL, G.1
  • 8
    • 0031215228 scopus 로고    scopus 로고
    • The pantograph equation in the complex plain
    • DERFEL, G. & ISERLES, A. (1997) The pantograph equation in the complex plain. J. Math. Anal. Appl. 213, 117-132.
    • (1997) J. Math. Anal. Appl , vol.213 , pp. 117-132
    • DERFEL, G.1    ISERLES, A.2
  • 9
    • 0040821594 scopus 로고    scopus 로고
    • On the asymptotics of solutions of a class of linear functional-differential equations
    • DERFEL, G. & VOGL, F. (1996) On the asymptotics of solutions of a class of linear functional-differential equations. Euro. J. Appl. Math. 7, 511-518.
    • (1996) Euro. J. Appl. Math , vol.7 , pp. 511-518
    • DERFEL, G.1    VOGL, F.2
  • 10
    • 22044440742 scopus 로고    scopus 로고
    • On neutral functional differential equations with variable delays
    • FELDSTEIN, A. & LIU, Y. (1998) On neutral functional differential equations with variable delays. Proc. of Cam. Phil. Soc. 124, 371-384.
    • (1998) Proc. of Cam. Phil. Soc , vol.124 , pp. 371-384
    • FELDSTEIN, A.1    LIU, Y.2
  • 12
    • 0242716037 scopus 로고
    • A functional differential equation arising in the modelling of cell-growth
    • HALL, A. J. & WAKE, G. C. (1989) A functional differential equation arising in the modelling of cell-growth. J. Aust. Math. Soc. Ser. B 30, 424-435.
    • (1989) J. Aust. Math. Soc. Ser. B , vol.30 , pp. 424-435
    • HALL, A.J.1    WAKE, G.C.2
  • 13
    • 0002851028 scopus 로고
    • A change of variables for functional differential equations
    • HEARD, M. L. (1975) A change of variables for functional differential equations. J. Differential Equations 18, 1-10.
    • (1975) J. Differential Equations , vol.18 , pp. 1-10
    • HEARD, M.L.1
  • 14
    • 52649085452 scopus 로고
    • On the generalized pantograph functional-differential equation
    • ISERLES, A. (1993) On the generalized pantograph functional-differential equation. Euro. J. Appl. Math. 4, 1-38.
    • (1993) Euro. J. Appl. Math , vol.4 , pp. 1-38
    • ISERLES, A.1
  • 15
    • 0031212296 scopus 로고    scopus 로고
    • Exact and discretized stability of the pantograph equation
    • ISERLES, A. (1997) Exact and discretized stability of the pantograph equation. Appl. Numer. Math. 24, 295-308.
    • (1997) Appl. Numer. Math , vol.24 , pp. 295-308
    • ISERLES, A.1
  • 16
    • 0031081849 scopus 로고    scopus 로고
    • On neutral functional-differential equations with proportional delays
    • ISERLES, A. & LIU, Y. (1997) On neutral functional-differential equations with proportional delays. J. Math. Anal. Appl. 207, 73-95.
    • (1997) J. Math. Anal. Appl , vol.207 , pp. 73-95
    • ISERLES, A.1    LIU, Y.2
  • 17
    • 84966219417 scopus 로고
    • The functional differential equation y′(x) = ay(λx) + by(x)
    • KATO, T. & MCLEOD, J. B. (1971) The functional differential equation y′(x) = ay(λx) + by(x). Bull. Amer. Math. Soc. 77, 891-937.
    • (1971) Bull. Amer. Math. Soc , vol.77 , pp. 891-937
    • KATO, T.1    MCLEOD, J.B.2
  • 19
    • 0032351492 scopus 로고    scopus 로고
    • The functional-differential equation y′(t) = Ay(t) + By(qt) + Cy′(qt) + f(t)
    • LEHNINGER, H. & LIU, Y. (1998) The functional-differential equation y′(t) = Ay(t) + By(qt) + Cy′(qt) + f(t). Euro. J. Appl. Math. 9, 81-91.
    • (1998) Euro. J. Appl. Math , vol.9 , pp. 81-91
    • LEHNINGER, H.1    LIU, Y.2
  • 20
    • 0009559114 scopus 로고
    • Asymptotic bounds of solutions of the functional differential equation x′(t) = ax(λt) + bx(t) + f(t), 0 < λ < 1
    • LIM, E. B. (1978) Asymptotic bounds of solutions of the functional differential equation x′(t) = ax(λt) + bx(t) + f(t), 0 < λ < 1. SIAM J. Math. Anal. 9, 915-920.
    • (1978) SIAM J. Math. Anal , vol.9 , pp. 915-920
    • LIM, E.B.1
  • 21
    • 0030523604 scopus 로고    scopus 로고
    • Asymptotic behaviour of functional-differential equations with proportional time delays
    • LIU, Y. (1996) Asymptotic behaviour of functional-differential equations with proportional time delays. Euro. J. Appl. Math. 7, 11-30.
    • (1996) Euro. J. Appl. Math , vol.7 , pp. 11-30
    • LIU, Y.1
  • 22
    • 33846204174 scopus 로고    scopus 로고
    • MAKAY, G. & TERJÉKI, J. (1998) On the asymptotic behavior of the pantograph equations. Electron J. Qual. Theory Differ. Equ. 2, 1-12 (electronic).
    • MAKAY, G. & TERJÉKI, J. (1998) On the asymptotic behavior of the pantograph equations. Electron J. Qual. Theory Differ. Equ. 2, 1-12 (electronic).
  • 23
    • 84974112115 scopus 로고
    • Transformations and canonical forms of functional-differential equations
    • NEUMAN, F. (1990) Transformations and canonical forms of functional-differential equations. Proc. Royal Soc. Edinburgh. 115A, 349-357.
    • (1990) Proc. Royal Soc. Edinburgh , vol.115 A , pp. 349-357
    • NEUMAN, F.1
  • 24
    • 0001579514 scopus 로고
    • The dynamics of a current collection system for an electric locomotive
    • OCKENDON, J. R. & TAYLER, A. B. (1971) The dynamics of a current collection system for an electric locomotive. Proc. Royal Soc. Lond. A 322, 447-468.
    • (1971) Proc. Royal Soc. Lond. A , vol.322 , pp. 447-468
    • OCKENDON, J.R.1    TAYLER, A.B.2
  • 25
    • 0009590690 scopus 로고
    • Some observations on the asymptotic behaviors of the solutions of the equation x′(t) = A(t)x(λt) + B(t)x(t), λ > 0
    • PANDOLFI, L. (1979) Some observations on the asymptotic behaviors of the solutions of the equation x′(t) = A(t)x(λt) + B(t)x(t), λ > 0. J. Math. Anal. Appl. 67, 483-489.
    • (1979) J. Math. Anal. Appl , vol.67 , pp. 483-489
    • PANDOLFI, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.