-
1
-
-
0036721042
-
On the number of Fourier coefficients that determine a Hilbert modular form
-
S. Baba, K. Chakraborty, and Y. Petridis, On the number of Fourier coefficients that determine a Hilbert modular form, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2497-2502.
-
(2002)
Proc. Amer. Math. Soc
, vol.130
, Issue.9
, pp. 2497-2502
-
-
Baba, S.1
Chakraborty, K.2
Petridis, Y.3
-
2
-
-
0031206388
-
An upper bound on conductors for pairs
-
C. J. Bushnell and G. Henniart, An upper bound on conductors for pairs, J. Number Theory 65 (1997), no. 2, 183-196.
-
(1997)
J. Number Theory
, vol.65
, Issue.2
, pp. 183-196
-
-
Bushnell, C.J.1
Henniart, G.2
-
3
-
-
0010999354
-
On general L-functions
-
E. Carletti, G. Monti Bragadin, and A. Perelli, On general L-functions, Acta Arith. 66 (1994), no. 2, 147-179.
-
(1994)
Acta Arith
, vol.66
, Issue.2
, pp. 147-179
-
-
Carletti, E.1
Monti Bragadin, G.2
Perelli, A.3
-
4
-
-
3042734356
-
A new method for lower bounds of L-functions
-
S. Gelbart, E. Lapid, and P. Sarnak, A new method for lower bounds of L-functions, C. R. Acad. Sci. Paris I 339 (2004), 91-94.
-
(2004)
C. R. Acad. Sci. Paris
, vol.1
, Issue.339
, pp. 91-94
-
-
Gelbart, S.1
Lapid, E.2
Sarnak, P.3
-
5
-
-
0002561264
-
Representation of the group GL(n, K) where K is a local field
-
I. M. Gelfand, ed, Wiley, New York
-
I. M. Gelfand and D. Kazhdan, Representation of the group GL(n, K) where K is a local field, Lie Groups and their Representations (I. M. Gelfand, ed.), Wiley, New York, 1974, pp. 95118.
-
(1974)
Lie Groups and their Representations
, pp. 95118
-
-
Gelfand, I.M.1
Kazhdan, D.2
-
6
-
-
0005546607
-
On the number of Fourier coefficients that determine a modular form
-
Amer. Math. Soc, Providence, RI
-
D. Goldfeld and J. Hoffstein, On the number of Fourier coefficients that determine a modular form, A Tribute to Emil Grosswald: Number Theory and Related Analysis, Contemp. Math., vol. 143, Amer. Math. Soc., Providence, RI, 1993, pp. 385-393.
-
(1993)
A Tribute to Emil Grosswald: Number Theory and Related Analysis, Contemp. Math
, vol.143
, pp. 385-393
-
-
Goldfeld, D.1
Hoffstein, J.2
-
7
-
-
33846148508
-
Comparison of Maaß wave forms
-
Springer, New York
-
J. Huntley, Comparison of Maaß wave forms, Number Theory (New York, 1989/1990), Springer, New York, 1991, pp. 129-147.
-
(1991)
Number Theory (New York, 1989/1990)
, pp. 129-147
-
-
Huntley, J.1
-
8
-
-
33846129592
-
-
H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. 2000, Special Part II, 705-741.
-
H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. 2000, Special Volume, Part II, 705-741.
-
-
-
-
9
-
-
0000656466
-
Rankin-Selberg convolutions
-
H. Jacquet, I.I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367-464.
-
(1983)
Amer. J. Math
, vol.105
, Issue.2
, pp. 367-464
-
-
Jacquet, H.1
Piatetskii-Shapiro, I.I.2
Shalika, J.A.3
-
11
-
-
0000166543
-
On the generalized Ramanujan conjecture for GL(n)
-
Amer. Math. Soc, Providence, RI
-
W. Luo, Z. Rudnick and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), Automorphic Forms, Automorphic Representations, and Arithmetic, Proc. Sympos. Pure Math., vol. 66, Part 2, Amer. Math. Soc., Providence, RI, 1999, pp. 301-310.
-
(1999)
Automorphic Forms, Automorphic Representations, and Arithmetic, Proc. Sympos. Pure Math
, vol.66
, Issue.PART 2
, pp. 301-310
-
-
Luo, W.1
Rudnick, Z.2
Sarnak, P.3
-
12
-
-
33846177068
-
-
I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, with contributions by A. Zelevinsky, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pp.
-
I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, with contributions by A. Zelevinsky, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pp.
-
-
-
-
13
-
-
0037082233
-
Upper and lower bounds at s = 1 for certain Dirichlet series with Euler product
-
G. Molteni, Upper and lower bounds at s = 1 for certain Dirichlet series with Euler product. Duke Math. J. 111 (2000), 133-158.
-
(2000)
Duke Math. J
, vol.111
, pp. 133-158
-
-
Molteni, G.1
-
14
-
-
0007508501
-
Explicit Formulas in the theory of automorphic forms
-
Number Theory Day Proc. Conf, Rockefeller Univ, New York, Springer, Berlin
-
C. Moreno, Explicit Formulas in the theory of automorphic forms, Number Theory Day (Proc. Conf., Rockefeller Univ., New York 1976), Lecture Notes in Math., vol. 626, Springer, Berlin, 1977, pp. 73-216.
-
(1976)
Lecture Notes in Math
, vol.626
, pp. 73-216
-
-
Moreno, C.1
-
15
-
-
0005619009
-
Analytic proof of the strong multiplicity one theorem
-
_, Analytic proof of the strong multiplicity one theorem, Amer. J. Math. 107 (1985), no. 1, 163-206.
-
(1985)
Amer. J. Math
, vol.107
, Issue.1
, pp. 163-206
-
-
Moreno, C.1
-
16
-
-
0005546608
-
Congruences between modular forms
-
Cambridge University Press, Cambridge
-
R. Murty, Congruences between modular forms, Analtic Number Theory (Kyoto, 1996), London Math. Soc. Lecture Notes Ser., vol. 247, Cambridge University Press, Cambridge, 1997, pp. 309-320.
-
(1997)
Analtic Number Theory (Kyoto, 1996), London Math. Soc. Lecture Notes Ser
, vol.247
, pp. 309-320
-
-
Murty, R.1
-
17
-
-
0001634176
-
Multiplicity one theorems
-
Amer. Math. Soc, Providence, RI
-
I. I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Sympos. Pure Math., vol. 33, Part 1, Amer. Math. Soc., Providence, RI, 1979, pp. 209-212.
-
(1979)
Proc. Sympos. Pure Math
, vol.33
, Issue.PART 1
, pp. 209-212
-
-
Piatetski-Shapiro, I.I.1
-
18
-
-
0037221759
-
On the exceptional zeros of Rankin-Selberg L-functions
-
D. Ramakrishnan and S. Wang, On the exceptional zeros of Rankin-Selberg L-functions, Compositio Math. 135 (2003), no. 2, 211-244.
-
(2003)
Compositio Math
, vol.135
, Issue.2
, pp. 211-244
-
-
Ramakrishnan, D.1
Wang, S.2
-
19
-
-
0000580673
-
Zeros of principal L-functions and random matrix theory, A celebration of John F. Nash, Jr
-
Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, A celebration of John F. Nash, Jr., Duke Math. J. 81 ( 1996), no. 2, 269-322.
-
(1996)
Duke Math. J
, vol.81
, Issue.2
, pp. 269-322
-
-
Rudnick, Z.1
Sarnak, P.2
-
20
-
-
33846122789
-
-
P. Samak, Nonvanishing of L-functions on R(s) = 1, A Supplemental to the Amer. J. Math., Contributions to Automorphic Forms, Geometry, and Number Theory: A in Honor of Joseph Shalika, The Johns Hopkins University Press, Baltimore, MD, 2004, pp. 719-732.
-
P. Samak, Nonvanishing of L-functions on R(s) = 1, A Supplemental Volume to the Amer. J. Math., Contributions to Automorphic Forms, Geometry, and Number Theory: A Volume in Honor of Joseph Shalika, The Johns Hopkins University Press, Baltimore, MD, 2004, pp. 719-732.
-
-
-
|