-
5
-
-
0034484727
-
Lie symmetries of mechanical systems with unilateral holonomic constraints
-
Yi Z., and Fengxiang M. Lie symmetries of mechanical systems with unilateral holonomic constraints. Chin. Sci. Bull. 45 (2000) 1354-1358
-
(2000)
Chin. Sci. Bull.
, vol.45
, pp. 1354-1358
-
-
Yi, Z.1
Fengxiang, M.2
-
6
-
-
0032508449
-
Finding Lie groups that reduce the order of discrete dynamical systems
-
Moritz B., Schwalm W., and Uherka D. Finding Lie groups that reduce the order of discrete dynamical systems. J. Phys. A: Math. 31 (1998) 7379-7402
-
(1998)
J. Phys. A: Math.
, vol.31
, pp. 7379-7402
-
-
Moritz, B.1
Schwalm, W.2
Uherka, D.3
-
7
-
-
0001870614
-
The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation
-
Nucci M.C., and Clarkson P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. Phys. Lett. A 164 (1992) 49-56
-
(1992)
Phys. Lett. A
, vol.164
, pp. 49-56
-
-
Nucci, M.C.1
Clarkson, P.A.2
-
8
-
-
33747378397
-
Group classification of nonlinear partial differential equations: a new approach to resolving the problem
-
Basarab P., and Lahno V. Group classification of nonlinear partial differential equations: a new approach to resolving the problem. Proc. Inst. Math. NAS Ukraine 43 (2002) 86-92
-
(2002)
Proc. Inst. Math. NAS Ukraine
, vol.43
, pp. 86-92
-
-
Basarab, P.1
Lahno, V.2
-
9
-
-
33747359263
-
Expanded Lie group transformations and similarity reductions of differential equations
-
Burde G.I. Expanded Lie group transformations and similarity reductions of differential equations. Proc. Inst. Math. NAS Ukraine 43 (2002) 93-101
-
(2002)
Proc. Inst. Math. NAS Ukraine
, vol.43
, pp. 93-101
-
-
Burde, G.I.1
-
10
-
-
33747347429
-
Classical and nonclassical symmetries of a generalized Boussinesq equation
-
Gandarias M.L., and Bruzon M.S. Classical and nonclassical symmetries of a generalized Boussinesq equation. J. Nonlin. Math. Phys. 5 (1998) 8-12
-
(1998)
J. Nonlin. Math. Phys.
, vol.5
, pp. 8-12
-
-
Gandarias, M.L.1
Bruzon, M.S.2
-
12
-
-
33846183859
-
-
E.C. Dauenhauer, J. Majdalani, Unsteady flows in semi-infinite expanding channels with wall injection, AIAA paper 99-3523, 1999.
-
-
-
-
13
-
-
0036803164
-
Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability
-
Majdalani J., Zhou C., and Dawson C.A. Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability. J. Biomech. 35 (2002) 1399-1403
-
(2002)
J. Biomech.
, vol.35
, pp. 1399-1403
-
-
Majdalani, J.1
Zhou, C.2
Dawson, C.A.3
-
14
-
-
0001589299
-
Boundary layer growth near a rear stagnation point
-
Proudman I., and Johnson K. Boundary layer growth near a rear stagnation point. J. Fluid Mech. 12 (1962) 161-168
-
(1962)
J. Fluid Mech.
, vol.12
, pp. 161-168
-
-
Proudman, I.1
Johnson, K.2
-
15
-
-
21144442612
-
Moderate-to-large injection and suction driven channel flows with expanding or contracting walls
-
Majdalani J., and Zhou C. Moderate-to-large injection and suction driven channel flows with expanding or contracting walls. ZAMM. Z. Angew. Math. Mech. 83 (2003) 181-196
-
(2003)
ZAMM. Z. Angew. Math. Mech.
, vol.83
, pp. 181-196
-
-
Majdalani, J.1
Zhou, C.2
-
16
-
-
33846165548
-
-
Y.Z. Boutros, M.B. Abd-el-Malek, N.A. Badran, H.S. Hassan, Lie-group method for unsteady flows in a semi-infinite expanding or contracting pipe with injection or suction through a porous wall, J. Comput. Appl. Math. (in press).
-
-
-
-
17
-
-
0014553510
-
On laminar flow through a uniformly porous pipe
-
Terrill R.M., and Thomas P.W. On laminar flow through a uniformly porous pipe. Appl. Sci. Res. 21 (1969) 37-67
-
(1969)
Appl. Sci. Res.
, vol.21
, pp. 37-67
-
-
Terrill, R.M.1
Thomas, P.W.2
-
18
-
-
0015651431
-
On some exponentially small terms arising in flow through a porous pipe
-
Terrill R.M. On some exponentially small terms arising in flow through a porous pipe. Quart. J. Mech. Appl. Math. 26 3 (1973) 347-354
-
(1973)
Quart. J. Mech. Appl. Math.
, vol.26
, Issue.3
, pp. 347-354
-
-
Terrill, R.M.1
-
19
-
-
36849122625
-
Laminar flow in channels with porous walls
-
Berman A.S. Laminar flow in channels with porous walls. J. Appl. Phys. 24 (1953) 1232-1235
-
(1953)
J. Appl. Phys.
, vol.24
, pp. 1232-1235
-
-
Berman, A.S.1
|