-
3
-
-
3543104543
-
-
DONATI C., DOUGLAS J. F., KOB W., PLIMPTON S. J., POOLE P. H. and GLOTZER S. C., Phys. Rev. Lett., 80 (1998) 2338.
-
(1998)
Phys. Rev. Lett
, vol.80
, pp. 2338
-
-
DONATI, C.1
DOUGLAS, J.F.2
KOB, W.3
PLIMPTON, S.J.4
POOLE, P.H.5
GLOTZER, S.C.6
-
4
-
-
0001150731
-
-
DONATI C., GLOTZER S. C., POOLE P. H., KOB W. and PLIMPTON S. J., Phys. Rev. E, 60 (1999) 3107.
-
(1999)
Phys. Rev. E
, vol.60
, pp. 3107
-
-
DONATI, C.1
GLOTZER, S.C.2
POOLE, P.H.3
KOB, W.4
PLIMPTON, S.J.5
-
5
-
-
0141540536
-
-
AICHELE M., GEBREMICHAEL Y., STARR F. W. and GLOTZER S. C., J. Chem. Phys., 119 (2003) 5290;
-
(2003)
J. Chem. Phys
, vol.119
, pp. 5290
-
-
AICHELE, M.1
GEBREMICHAEL, Y.2
STARR, F.W.3
GLOTZER, S.C.4
-
6
-
-
33846176267
-
-
120 (2004) 6798.
-
120 (2004) 6798.
-
-
-
-
7
-
-
0034723445
-
-
WEEKS E. R., CROCKER J. C., LEVITT A. C., SCHOFIELD A. and WEITZ D. A., Science, 287 (2000) 627.
-
(2000)
Science
, vol.287
, pp. 627
-
-
WEEKS, E.R.1
CROCKER, J.C.2
LEVITT, A.C.3
SCHOFIELD, A.4
WEITZ, D.A.5
-
8
-
-
36549101292
-
-
MIYAGAWA H., HIWATARI Y., BERNU B. and HANSEN J., J. Chem. Phys., 88 (1988) 3879;
-
(1988)
J. Chem. Phys
, vol.88
, pp. 3879
-
-
MIYAGAWA, H.1
HIWATARI, Y.2
BERNU, B.3
HANSEN, J.4
-
11
-
-
4544253661
-
-
TEBOUL V., MONTEIL A., AI L. C., KERRACHE A. and MAABOU S., Eur. Phys. J. B, 40 (2004) 49;
-
(2004)
Eur. Phys. J. B
, vol.40
, pp. 49
-
-
TEBOUL, V.1
MONTEIL, A.2
AI, L.C.3
KERRACHE, A.4
MAABOU, S.5
-
15
-
-
27244449285
-
-
GIOVAMBAT-TISTA N., BULDYREV S. V., STANLEY H. E. and STARR F. W., Phys. Rev. E, 72 (2005) 011202.
-
(2005)
Phys. Rev. E
, vol.72
, pp. 011202
-
-
GIOVAMBAT-TISTA, N.1
BULDYREV, S.V.2
STANLEY, H.E.3
STARR, F.W.4
-
16
-
-
33244492445
-
-
APPIGNANESI G. A., FRIS J. A. R., MONTANI R. A. and KOB W., Phys. Rev. Lett., 96 (2006) 057801.
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 057801
-
-
APPIGNANESI, G.A.1
FRIS, J.A.R.2
MONTANI, R.A.3
KOB, W.4
-
18
-
-
0035509907
-
-
GEBREMICHAEL Y., SCHRØDER T. B., STARR F. W. and GLOTZER S. C., Phys. Rev. E, 64 (2001) 051503.
-
(2001)
Phys. Rev. E
, vol.64
, pp. 051503
-
-
GEBREMICHAEL, Y.1
SCHRØDER, T.B.2
STARR, F.W.3
GLOTZER, S.C.4
-
23
-
-
33846160058
-
-
preprint cond-mat/0106086
-
LATZ A., preprint cond-mat/0106086.
-
-
-
LATZ, A.1
-
25
-
-
30244435648
-
-
BOUCHAUD J.-P., CUGLIANDOLO L., KURCHAN J. and MÉZARD M., Physica A, 226 (1996) 243.
-
(1996)
Physica A
, vol.226
, pp. 243
-
-
BOUCHAUD, J.-P.1
CUGLIANDOLO, L.2
KURCHAN, J.3
MÉZARD, M.4
-
27
-
-
6144288607
-
-
Phys. Rev. E, 51 (1995) 4626; 52 (1995) 4134.
-
Phys. Rev. E, 51 (1995) 4626; 52 (1995) 4134.
-
-
-
-
29
-
-
33846182149
-
-
n are of the order of 0.1 and 0.7, respectively. For the choice of √20 see ref. [19] in [21].
-
n are of the order of 0.1 and 0.7, respectively. For the choice of √20 see ref. [19] in [21].
-
-
-
-
30
-
-
33846183998
-
-
For more details of the jump definition see [18]. Therein we distinguish irreversible and reversible jumps. In this letter we include for all presented results both irreversible and reversible jumps.
-
For more details of the jump definition see [18]. Therein we distinguish irreversible and reversible jumps. In this letter we include for all presented results both irreversible and reversible jumps.
-
-
-
-
32
-
-
33846121811
-
-
Note that the power law for all temperatures (with temperature-dependent τ) is not simply due to the same subset of jumping particles. Instead, we find that the average number of jump events and average number of clusters vary for temperatures T = 0.15-0.43 between 30 460 and 15-170, respectively.
-
Note that the power law for all temperatures (with temperature-dependent τ) is not simply due to the same subset of jumping particles. Instead, we find that the average number of jump events and average number of clusters vary for temperatures T = 0.15-0.43 between 30 460 and 15-170, respectively.
-
-
-
-
34
-
-
33846123195
-
-
The definition of string length in [3,5,9,11] uses also positions at different times however does not include avalanche-like correlations in time
-
The definition of string length in [3,5,9,11] uses also positions at different times however does not include avalanche-like correlations in time.
-
-
-
-
41
-
-
33846129925
-
-
4 [22]. To reduce finite-size effects due to these small numbers of jump events, we determined P(s) for fig. 5 by combining all ten independent simulation runs.
-
4 [22]. To reduce finite-size effects due to these small numbers of jump events, we determined P(s) for fig. 5 by combining all ten independent simulation runs.
-
-
-
|