메뉴 건너뛰기




Volumn 52, Issue 1-2, 2005, Pages 101-113

A new unconditional result about large spaces between zeta zeros

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33846123996     PISSN: 00255793     EISSN: None     Source Type: Journal    
DOI: 10.1112/S0025579300000383     Document Type: Article
Times cited : (26)

References (17)
  • 1
    • 0001313331 scopus 로고
    • A note on gaps between zeros of the zeta-function
    • J. B. Conrey, A. Ghosh and S. M. Gonek, A note on gaps between zeros of the zeta-function. Bull. London Math. Soc. 16 (1984), 421-424.
    • (1984) Bull. London Math. Soc , vol.16 , pp. 421-424
    • Conrey, J.B.1    Ghosh, A.2    Gonek, S.M.3
  • 2
    • 84974313918 scopus 로고
    • Large gaps between zeros of the zeta-function
    • J. B. Conrey, A. Ghosh and S. M. Gonek, Large gaps between zeros of the zeta-function. Mathematika 33 (1986), 212-238.
    • (1986) Mathematika , vol.33 , pp. 212-238
    • Conrey, J.B.1    Ghosh, A.2    Gonek, S.M.3
  • 3
    • 0001792014 scopus 로고
    • The fourth moment of derivatives of the Riemann zeta-function
    • J. B. Conrey, The fourth moment of derivatives of the Riemann zeta-function: Quart. J. Math. Oxford Ser. (2) 39 (1988), 21-36.
    • (1988) Quart. J. Math. Oxford Ser. (2) , vol.39 , pp. 21-36
    • Conrey, J.B.1
  • 5
    • 0039446033 scopus 로고    scopus 로고
    • The behaviour of the Riemann zeta-function on the critical line
    • R. R. Hall, The behaviour of the Riemann zeta-function on the critical line. Mathematika 46 (1999), 281-313.
    • (1999) Mathematika , vol.46 , pp. 281-313
    • Hall, R.R.1
  • 6
    • 0036113976 scopus 로고    scopus 로고
    • R. R. Hall, A Wirtinger type inequality and the spacing of the zeros of the Riemann zetafunction. J. Number Theory 93 (2002), 235-245.
    • R. R. Hall, A Wirtinger type inequality and the spacing of the zeros of the Riemann zetafunction. J. Number Theory 93 (2002), 235-245.
  • 7
    • 18444387115 scopus 로고    scopus 로고
    • On the stationary points of Hardy's function Z(t)
    • R. R. Hall, On the stationary points of Hardy's function Z(t). Acta Arithmetica 111 (2004), 125-140.
    • (2004) Acta Arithmetica , vol.111 , pp. 125-140
    • Hall, R.R.1
  • 9
    • 0001045497 scopus 로고
    • Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes
    • G. H. Hardy and J. E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 41 (1918), 119-196.
    • (1918) Acta Math , vol.41 , pp. 119-196
    • Hardy, G.H.1    Littlewood, J.E.2
  • 11
    • 84960572849 scopus 로고
    • Mean-value theorems in the theory of the Riemann zeta-function
    • A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function. Proc. London Math. Soc. (2) 27 (1928), 273-300.
    • (1928) Proc. London Math. Soc. (2) , vol.27 , pp. 273-300
    • Ingham, A.E.1
  • 12
    • 33846160815 scopus 로고    scopus 로고
    • H. L. Montgomery and A. M. Odlyzko, Gaps between zeros of the zeta-function. Coll. Math. Soc. János Bolyai 34. Topics in Classical Number Theory (Budapest, 1981).
    • H. L. Montgomery and A. M. Odlyzko, Gaps between zeros of the zeta-function. Coll. Math. Soc. János Bolyai 34. Topics in Classical Number Theory (Budapest, 1981).
  • 14
    • 10044279634 scopus 로고
    • On the difference between consecutive zeros of the Riemann zeta-function
    • J. Mueller, On the difference between consecutive zeros of the Riemann zeta-function. J. Number Theory 14 (1982), 327-331.
    • (1982) J. Number Theory , vol.14 , pp. 327-331
    • Mueller, J.1
  • 15
    • 0000624055 scopus 로고
    • The zeta-function and the Riemann Hypothesis
    • A. Selberg, The zeta-function and the Riemann Hypothesis. Skandinaviske Mathematikerkongres 10 (1946), 187-200.
    • (1946) Skandinaviske Mathematikerkongres , vol.10 , pp. 187-200
    • Selberg, A.1
  • 16
    • 33846175908 scopus 로고    scopus 로고
    • E. C. Titchmarsh, The theory of the Riemann zeta-function (revised by D.R. Heath-Brown) (Oxford, 1986).
    • E. C. Titchmarsh, The theory of the Riemann zeta-function (revised by D.R. Heath-Brown) (Oxford, 1986).
  • 17
    • 0037936350 scopus 로고
    • An approximate functional equation for the product of two ζ-functions
    • J. R. Wilton, An approximate functional equation for the product of two ζ-functions. Proc. London Math. Soc. 31 (1930), 11-17.
    • (1930) Proc. London Math. Soc , vol.31 , pp. 11-17
    • Wilton, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.