메뉴 건너뛰기




Volumn 60, Issue 1, 2007, Pages 5-29

On compressing frequent patterns

Author keywords

Data mining; Frequent pattern mining

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA COMPRESSION; DATA STRUCTURES; PROBLEM SOLVING;

EID: 33846032317     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2006.01.006     Document Type: Article
Times cited : (23)

References (20)
  • 1
    • 12244313034 scopus 로고    scopus 로고
    • F. Afrati, A. Gionis, H. Mannila, Approximating a collection of frequent sets, in Proc. KDD'04, pp. 12-19.
  • 2
    • 0027621699 scopus 로고    scopus 로고
    • R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proc. SIGMOD'93, pp. 207-216.
  • 3
    • 0029212693 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Mining sequential patterns, in: Proc. ICDE'95, pp. 3-14.
  • 4
    • 0037243046 scopus 로고    scopus 로고
    • Free-sets: a condensed representation of Boolean data for the approximation of frequency queries
    • Boulicaut J., Bykowski A., and Rigotti C. Free-sets: a condensed representation of Boolean data for the approximation of frequency queries. Data Mining and Knowledge Discovery Journal 7 1 (2003) 5-22
    • (2003) Data Mining and Knowledge Discovery Journal , vol.7 , Issue.1 , pp. 5-22
    • Boulicaut, J.1    Bykowski, A.2    Rigotti, C.3
  • 5
    • 0031161999 scopus 로고    scopus 로고
    • S. Brin, R. Motwani, C. Silverstein, Beyond market basket: generalizing association rules to correlations, in: Proc. SIGMOD'97, pp. 265-276.
  • 6
    • 84864832875 scopus 로고    scopus 로고
    • T. Calders, B. Goethals, Mining all non-derivable frequent itemsets, in: Proc. PKDD'02, pp. 74-85.
  • 8
    • 33845975810 scopus 로고    scopus 로고
    • Frequent Itemset Mining Dataset Repository, Available from: .
  • 9
    • 0030642745 scopus 로고    scopus 로고
    • D. Gunopulos, H. Mannila, R. Khardon, H. Toivonen, Data mining, hypergraph transversals, and machine learning, in: Proc. PODS'97, pp. 209-216.
  • 10
    • 33845980038 scopus 로고    scopus 로고
    • G. Grahne, J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, in: Proc. IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03).
  • 11
    • 0032627945 scopus 로고    scopus 로고
    • J. Han, G. Dong, Y. Yin, Efficient mining of partial periodic patterns in time series database, in: Proc. ICDE'99, pp. 106-115.
  • 12
    • 0039253846 scopus 로고    scopus 로고
    • J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: Proc. SIGMOD'00, pp. 1-12.
  • 13
    • 0030643619 scopus 로고    scopus 로고
    • B. Lent, A. Swami, J. Widom, Clustering association rules, in: Proc. ICDE'97, pp. 220-231.
  • 15
    • 29244457315 scopus 로고    scopus 로고
    • Q. Mei, C. Zhai, Discovering evolutionary theme patterns from text: an exploration of temporal text mining, in: Proc. KDD'05, pp. 198-207.
  • 16
    • 84911977993 scopus 로고    scopus 로고
    • N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, in: Proc. ICDT'99, pp. 398-416.
  • 17
    • 33845988204 scopus 로고    scopus 로고
    • J. Pei, A. Tung, J. Han, Fault-tolerant frequent pattern mining: problems and challenges, in: Proc. DMKD'01.
  • 18
    • 33845969338 scopus 로고    scopus 로고
    • C. Silverstein, S. Brin, R. Motwani, J. Ullman, Scalable techniques for mining causal structures, in: Proc. VLDB'98, pp. 594-605.
  • 19
    • 0344756842 scopus 로고    scopus 로고
    • Modern information retrieval: a brief overview
    • Singhal A. Modern information retrieval: a brief overview. Bull. IEEE CS Tech. Comm. Data Eng. 24 4 (2001) 35-43
    • (2001) Bull. IEEE CS Tech. Comm. Data Eng. , vol.24 , Issue.4 , pp. 35-43
    • Singhal, A.1
  • 20
    • 33845985123 scopus 로고    scopus 로고
    • M. Zaki, C. Hsiao, Charm: an efficient algorithm for closed itemset mining, in: Proc. SDM'02.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.