메뉴 건너뛰기




Volumn WS-06-11, Issue , 2006, Pages 129-135

Directing a portfolio with learning

Author keywords

[No Author keywords available]

Indexed keywords

PLANNING SYSTEMS; PORTFOLIO STRATEGY; RUN-TIME DISTRIBUTIONS;

EID: 33846015882     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (27)
  • 1
    • 27344455409 scopus 로고    scopus 로고
    • Using randomization and learning to solve hard real-world instances of satisfiability
    • Baptista, L., and Silva, J. P. M. 2000. Using randomization and learning to solve hard real-world instances of satisfiability. In Principles and Practice of Constraint Programming, 489-494.
    • (2000) Principles and Practice of Constraint Programming , pp. 489-494
    • Baptista, L.1    Silva, J.P.M.2
  • 2
    • 33846024636 scopus 로고    scopus 로고
    • Simple rules for low-knowledge algorithm selection
    • Beck, J. C., and Freuder, E. C. 2004. Simple rules for low-knowledge algorithm selection. In Proc. of 1st CPAIOR.
    • (2004) Proc. of 1st CPAIOR
    • Beck, J.C.1    Freuder, E.C.2
  • 4
    • 85166375551 scopus 로고    scopus 로고
    • How to solve it automatically: Selection among problem solving methods
    • Fink, E. 1998. How to solve it automatically: Selection among problem solving methods. In Proc. of 4th AIPS, 128-136.
    • (1998) Proc. of 4th AIPS , pp. 128-136
    • Fink, E.1
  • 5
    • 33845982488 scopus 로고    scopus 로고
    • Making choices using structure at the instance level within a case based reasoning framework
    • Gebruers, C.; Guerri, A.; Hnich, B.; and Milano, M. 2004. Making choices using structure at the instance level within a case based reasoning framework. In CPAIOR, 380-386.
    • (2004) CPAIOR , pp. 380-386
    • Gebruers, C.1    Guerri, A.2    Hnich, B.3    Milano, M.4
  • 6
    • 26944458114 scopus 로고    scopus 로고
    • Using CBR to select solution strategies in constraint programming
    • Gebruers, C.; Hnich, B.; Bridge, D. G.; and Freuder, E. C. 2005. Using CBR to select solution strategies in constraint programming. In ICCBR, 222-236.
    • (2005) ICCBR , pp. 222-236
    • Gebruers, C.1    Hnich, B.2    Bridge, D.G.3    Freuder, E.C.4
  • 7
    • 0003780657 scopus 로고    scopus 로고
    • PDDL : The planning domain defnition language
    • Technical report, Yale Center for Computational Vision and Control
    • Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins., D. 1998. PDDL : the planning domain defnition language. Technical report, Yale Center for Computational Vision and Control.
    • (1998)
    • Ghallab, M.1    Howe, A.2    Knoblock, C.3    McDermott, D.4    Ram, A.5    Veloso, M.6    Weld, D.7    Wilkins, D.8
  • 8
    • 0001836740 scopus 로고    scopus 로고
    • Algorithm portfolio design: Theory vs. practice
    • Linz, Austria, Morgan Kaufman
    • Gomes, C. P., and Selman, B. 1997. Algorithm portfolio design: Theory vs. practice. In Proc. of 13th UAI. Linz, Austria.: Morgan Kaufman.
    • (1997) Proc. of 13th UAI
    • Gomes, C.P.1    Selman, B.2
  • 9
    • 0029679218 scopus 로고    scopus 로고
    • Adaptive problem-solving for large-scale scheduling problems: A case study
    • Gratch, J., and Chien, S. 1996. Adaptive problem-solving for large-scale scheduling problems: A case study. JAIR 4:365-396.
    • (1996) JAIR , vol.4 , pp. 365-396
    • Gratch, J.1    Chien, S.2
  • 10
    • 85017348041 scopus 로고    scopus 로고
    • Learning techniques for automatic algorithm portfolio selection
    • Guerri, A., and Milano, M. 2004. Learning techniques for automatic algorithm portfolio selection. In Proc. of 16th ECAI, 475-479.
    • (2004) Proc. of 16th ECAI , pp. 475-479
    • Guerri, A.1    Milano, M.2
  • 11
    • 22944472703 scopus 로고    scopus 로고
    • A learning-based algorithm selection meta-reasoner for the real-time mpe problem
    • Guo, H., and Hsu, W. H. 2004. A learning-based algorithm selection meta-reasoner for the real-time mpe problem. In Australian Conference on Artificial Intelligence, 307-318.
    • (2004) Australian Conference on Artificial Intelligence , pp. 307-318
    • Guo, H.1    Hsu, W.H.2
  • 12
    • 84880900212 scopus 로고    scopus 로고
    • Local search topology in planning benchmarks: An empirical analysis
    • Hoffmann, J. 2001. Local search topology in planning benchmarks: An empirical analysis. In Proc. of 17th IJCAI, 453-458.
    • (2001) Proc. of 17th IJCAI , pp. 453-458
    • Hoffmann, J.1
  • 16
    • 0031035643 scopus 로고    scopus 로고
    • An economics approach to hard combinatorial problems
    • Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An economics approach to hard combinatorial problems. Science 275:51-54.
    • (1997) Science , vol.275 , pp. 51-54
    • Huberman, B.A.1    Lukose, R.M.2    Hogg, T.3
  • 17
    • 0010007403 scopus 로고    scopus 로고
    • Algorithm selection using reinforcement learning
    • Lagoudakis, M. G., and Littman, M. L. 2000. Algorithm selection using reinforcement learning. In Proc. 17th ICML, 511-518.
    • (2000) Proc , vol.17 th , Issue.ICML , pp. 511-518
    • Lagoudakis, M.G.1    Littman, M.L.2
  • 22
    • 0030232147 scopus 로고    scopus 로고
    • Automatically configuring constraint satisfaction programs: A case study
    • Minton, S. 1996. Automatically configuring constraint satisfaction programs: A case study. Constraints 1(1/2):7-43.
    • (1996) Constraints , vol.1 , Issue.1-2 , pp. 7-43
    • Minton, S.1
  • 24
    • 0003056605 scopus 로고
    • The algorithm selection problem
    • Rice, J. R. 1976. The algorithm selection problem. Advances in Computers 15:65-118.
    • (1976) Advances in Computers , vol.15 , pp. 65-118
    • Rice, J.R.1
  • 25
    • 0016556911 scopus 로고
    • Optimal problem-solving search: All-or-none solutions
    • Simon, H., and Kadan, J. 1975. Optimal problem-solving search: All-or-none solutions. Artificial Intelligence 6:236-247.
    • (1975) Artificial Intelligence , vol.6 , pp. 236-247
    • Simon, H.1    Kadan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.