메뉴 건너뛰기




Volumn 344, Issue 2, 2007, Pages 89-92

Long time behavior of splitting methods applied to the linear Schrödinger equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845984363     PISSN: 1631073X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.crma.2006.11.024     Document Type: Article
Times cited : (12)

References (6)
  • 1
    • 0036556648 scopus 로고    scopus 로고
    • Order estimates in time of splitting methods for the nonlinear Schrödinger equation
    • Besse C., Bidégaray B., and Descombes S. Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 5 (2000) 26-40
    • (2000) SIAM J. Numer. Anal. , vol.40 , Issue.5 , pp. 26-40
    • Besse, C.1    Bidégaray, B.2    Descombes, S.3
  • 2
    • 33846023857 scopus 로고    scopus 로고
    • G. Dujardin, E. Faou, Normal form and long time analysis of splitting schemes for the linear Schrödinger equation, Preprint
  • 4
    • 0000092377 scopus 로고    scopus 로고
    • Error bounds for exponential operator splittings
    • Jahnke T., and Lubich C. Error bounds for exponential operator splittings. BIT 40 (2000) 735-744
    • (2000) BIT , vol.40 , pp. 735-744
    • Jahnke, T.1    Lubich, C.2
  • 6
    • 0033628310 scopus 로고    scopus 로고
    • Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian systems
    • Shang Z. Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian systems. Nonlinearity 13 (2000) 299-308
    • (2000) Nonlinearity , vol.13 , pp. 299-308
    • Shang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.