-
3
-
-
84974110656
-
On the reversed flow solutions of the Falkner-Skan equations
-
Brown S.N., and Stewartson K. On the reversed flow solutions of the Falkner-Skan equations. Mathematika 13 25 (1996) 1-6
-
(1996)
Mathematika
, vol.13
, Issue.25
, pp. 1-6
-
-
Brown, S.N.1
Stewartson, K.2
-
5
-
-
84976032101
-
On the uniqueness of solutions of the Falkner-Skan equation
-
Craven A.H., and Peletier L.A. On the uniqueness of solutions of the Falkner-Skan equation. Mathematika 19 (1972) 129-133
-
(1972)
Mathematika
, vol.19
, pp. 129-133
-
-
Craven, A.H.1
Peletier, L.A.2
-
6
-
-
17944378468
-
Ordinary Differential Equations
-
SIAM, Philadelphia, PA
-
Hartman P. Ordinary Differential Equations. Class. Appl. Math. vol. 38 (2002), SIAM, Philadelphia, PA
-
(2002)
Class. Appl. Math.
, vol.38
-
-
Hartman, P.1
-
7
-
-
33845901181
-
On the existence of similar solutions of some boundary layer problems
-
Hartman P. On the existence of similar solutions of some boundary layer problems. SIAM J. Math. Anal. 3 1 (1972) 120-147
-
(1972)
SIAM J. Math. Anal.
, vol.3
, Issue.1
, pp. 120-147
-
-
Hartman, P.1
-
8
-
-
33845892971
-
An existence theorem for a class of nonlinear boundary value problems including that of Falkner and Skan
-
Hastings S.P. An existence theorem for a class of nonlinear boundary value problems including that of Falkner and Skan. J. Differential Equations 9 (1971) 580-590
-
(1971)
J. Differential Equations
, vol.9
, pp. 580-590
-
-
Hastings, S.P.1
-
9
-
-
0040757273
-
Reversed flow solutions of the Falkner-Skan equations
-
Hastings S.P. Reversed flow solutions of the Falkner-Skan equations. SIAM J. Appl. Math. 22 2 (1972) 329-334
-
(1972)
SIAM J. Appl. Math.
, vol.22
, Issue.2
, pp. 329-334
-
-
Hastings, S.P.1
-
10
-
-
33845913975
-
-
K.Q. Lan, G.C. Yang, Positive solutions of the Falkner-Skan equation arising in the boundary layer theory, Canad. Math. Bull., in press
-
-
-
-
11
-
-
85007696271
-
Further solutions of the Falkner-Skan equation
-
Libby P.A., and Liu T.M. Further solutions of the Falkner-Skan equation. AIAA J. 5 5 (1967) 1040-1042
-
(1967)
AIAA J.
, vol.5
, Issue.5
, pp. 1040-1042
-
-
Libby, P.A.1
Liu, T.M.2
-
13
-
-
0012645542
-
Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary
-
Riley N., and Weidman P.D. Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary. SIAM J. Appl. Math. 49 5 (1989) 1350-1358
-
(1989)
SIAM J. Appl. Math.
, vol.49
, Issue.5
, pp. 1350-1358
-
-
Riley, N.1
Weidman, P.D.2
-
15
-
-
33845903768
-
A generalization of the Helly selection theorem
-
Schrader K. A generalization of the Helly selection theorem. Bull. Amer. Math. Soc. 78 3 (1972) 415-419
-
(1972)
Bull. Amer. Math. Soc.
, vol.78
, Issue.3
, pp. 415-419
-
-
Schrader, K.1
-
16
-
-
33845899312
-
A note on the existence of a solution of the Falkner-Skan equation
-
Tam K.K. A note on the existence of a solution of the Falkner-Skan equation. Canad. Math. Bull. 13 (1970) 125-127
-
(1970)
Canad. Math. Bull.
, vol.13
, pp. 125-127
-
-
Tam, K.K.1
-
17
-
-
0041993689
-
Singular nonlinear boundary value problems arising in boundary layer theory
-
Wang J., Gao W., and Zhang Z. Singular nonlinear boundary value problems arising in boundary layer theory. J. Math. Anal. Appl. 233 (1999) 246-256
-
(1999)
J. Math. Anal. Appl.
, vol.233
, pp. 246-256
-
-
Wang, J.1
Gao, W.2
Zhang, Z.3
-
18
-
-
0001589076
-
On the differential equations of the simplest boundary-layer problems
-
Weyl H. On the differential equations of the simplest boundary-layer problems. Ann. of Math. 43 2 (1942) 381-407
-
(1942)
Ann. of Math.
, vol.43
, Issue.2
, pp. 381-407
-
-
Weyl, H.1
-
19
-
-
0141461760
-
Existence of solutions to the third-order nonlinear differential equations arising in boundary layer theory
-
Yang G.C. Existence of solutions to the third-order nonlinear differential equations arising in boundary layer theory. Appl. Math. Lett. 16 (2003) 827-832
-
(2003)
Appl. Math. Lett.
, vol.16
, pp. 827-832
-
-
Yang, G.C.1
-
20
-
-
12244259728
-
′ 2) = 0 with λ ∈ (- frac(1, 2), 0) arising in boundary layer theory
-
′ 2) = 0 with λ ∈ (- frac(1, 2), 0) arising in boundary layer theory. Appl. Math. Lett. 17 (2004) 1261-1265
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 1261-1265
-
-
Yang, G.C.1
|