-
2
-
-
35949040541
-
Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons
-
Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27 (1971) 1192-1194
-
(1971)
Phys. Rev. Lett.
, vol.27
, pp. 1192-1194
-
-
Hirota, R.1
-
4
-
-
36749112076
-
The painlevé property for partial differential equations
-
Weiss J., Tabor M., and Carnevale G. The painlevé property for partial differential equations. J. Math. Phys. 24 (1983) 522-526
-
(1983)
J. Math. Phys.
, vol.24
, pp. 522-526
-
-
Weiss, J.1
Tabor, M.2
Carnevale, G.3
-
5
-
-
0043093642
-
A simple transformation for nonlinear waves
-
Yan C. A simple transformation for nonlinear waves. Phys. Lett. A 224 (1996) 77-84
-
(1996)
Phys. Lett. A
, vol.224
, pp. 77-84
-
-
Yan, C.1
-
6
-
-
17844387391
-
Homotopy perturbation method for bifurcation of nonlinear problems
-
He J.H. Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 207-208
-
(2005)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.6
, pp. 207-208
-
-
He, J.H.1
-
7
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
He J.H. Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons & Fractals 26 (2005) 695-700
-
(2005)
Chaos, Solitons & Fractals
, vol.26
, pp. 695-700
-
-
He, J.H.1
-
8
-
-
17844395724
-
Application of He's homotopy perturbation method to Volterra's integro-differential equation
-
El-Shahed M. Application of He's homotopy perturbation method to Volterra's integro-differential equation. Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 163-168
-
(2005)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.6
, pp. 163-168
-
-
El-Shahed, M.1
-
10
-
-
0001051423
-
Exact solution for a compound KdV-Burgers equations
-
Wang M.L. Exact solution for a compound KdV-Burgers equations. Phys. Lett. A 213 (1996) 279
-
(1996)
Phys. Lett. A
, vol.213
, pp. 279
-
-
Wang, M.L.1
-
11
-
-
0041621600
-
Variational principles for some nonlinear partial differential equations with variable coefficients
-
He J.H. Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos, Solitons & Fractals 19 (2004) 847-851
-
(2004)
Chaos, Solitons & Fractals
, vol.19
, pp. 847-851
-
-
He, J.H.1
-
12
-
-
12544257525
-
Variational approach to (2 + 1)-dimensional dispersive long water equations
-
He J.H. Variational approach to (2 + 1)-dimensional dispersive long water equations. Phys. Lett. A 335 (2005) 182-184
-
(2005)
Phys. Lett. A
, vol.335
, pp. 182-184
-
-
He, J.H.1
-
13
-
-
1142300799
-
Variational approach to nonlinear electrochemical system
-
Liu H.M. Variational approach to nonlinear electrochemical system. Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 95-96
-
(2004)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.5
, pp. 95-96
-
-
Liu, H.M.1
-
14
-
-
4243080806
-
Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method
-
Liu H.M. Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method. Chaos, Solitons & Fractals 23 (2005) 573-576
-
(2005)
Chaos, Solitons & Fractals
, vol.23
, pp. 573-576
-
-
Liu, H.M.1
-
15
-
-
4243067324
-
An algebraic method exactly solving two high-dimensional nonlinear evolution equations
-
Hu J.Q. An algebraic method exactly solving two high-dimensional nonlinear evolution equations. Chaos, Solitons & Fractals 23 (2005) 391-398
-
(2005)
Chaos, Solitons & Fractals
, vol.23
, pp. 391-398
-
-
Hu, J.Q.1
-
16
-
-
0001229736
-
Solitary wave solutions of nonlinear wave equations
-
Malfliet W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60 (1992) 650-654
-
(1992)
Am. J. Phys.
, vol.60
, pp. 650-654
-
-
Malfliet, W.1
-
17
-
-
0042440381
-
Travelling solitary wave solutions to a compound KdV-Burgers equation
-
Parkes E.J., and Duffy B.R. Travelling solitary wave solutions to a compound KdV-Burgers equation. Phys. Lett. A 229 (1997) 217-220
-
(1997)
Phys. Lett. A
, vol.229
, pp. 217-220
-
-
Parkes, E.J.1
Duffy, B.R.2
-
18
-
-
0034606149
-
Extended tanh-function method and its applications to nonlinear equations
-
Fan E.G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277 (2000) 212-218
-
(2000)
Phys. Lett. A
, vol.277
, pp. 212-218
-
-
Fan, E.G.1
-
19
-
-
4243528488
-
New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water
-
Yan Z.Y., and Zhang H.Q. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Phys. Lett. A 285 (2001) 355-362
-
(2001)
Phys. Lett. A
, vol.285
, pp. 355-362
-
-
Yan, Z.Y.1
Zhang, H.Q.2
-
20
-
-
7244223299
-
Group analysis and modified extended tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations
-
Zayed E.M.E., Zedan H.A., and Gepreel K.A. Group analysis and modified extended tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations. Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 221-234
-
(2004)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.5
, pp. 221-234
-
-
Zayed, E.M.E.1
Zedan, H.A.2
Gepreel, K.A.3
-
22
-
-
9644255681
-
Symbolic computation in non-linear evolution equation: application to (3 + 1)-dimensional Kadomtsev-Petviashvili equation
-
Xie F.D., Zhang Y., and Lü Z.S. Symbolic computation in non-linear evolution equation: application to (3 + 1)-dimensional Kadomtsev-Petviashvili equation. Chaos, Solitons & Fractals 24 (2005) 257-263
-
(2005)
Chaos, Solitons & Fractals
, vol.24
, pp. 257-263
-
-
Xie, F.D.1
Zhang, Y.2
Lü, Z.S.3
-
23
-
-
0242507103
-
Periodic wave solutions to a coupled KdV equations with variable coefficients
-
Zhou Y.B., Wang M.L., and Wang Y.M. Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308 (2003) 31-36
-
(2003)
Phys. Lett. A
, vol.308
, pp. 31-36
-
-
Zhou, Y.B.1
Wang, M.L.2
Wang, Y.M.3
-
24
-
-
0242286702
-
The periodic wave solutions for the Klein-Gordon-Schrödinger equations
-
Wang M.L., and Zhou Y.B. The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A 318 (2003) 84-92
-
(2003)
Phys. Lett. A
, vol.318
, pp. 84-92
-
-
Wang, M.L.1
Zhou, Y.B.2
-
25
-
-
13444270226
-
The periodic wave solutions for two systems of nonlinear wave equations
-
Wang M.L., Wang Y.M., and Zhang J.L. The periodic wave solutions for two systems of nonlinear wave equations. Chin. Phys. 12 (2003) 1341-1348
-
(2003)
Chin. Phys.
, vol.12
, pp. 1341-1348
-
-
Wang, M.L.1
Wang, Y.M.2
Zhang, J.L.3
-
26
-
-
1542375387
-
The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations
-
Zhou Y.B., Wang M.L., and Miao T.D. The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations. Phys. Lett. A 323 (2004) 77-88
-
(2004)
Phys. Lett. A
, vol.323
, pp. 77-88
-
-
Zhou, Y.B.1
Wang, M.L.2
Miao, T.D.3
-
27
-
-
0035828886
-
Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
-
Liu S.K., Fu Z.T., Liu S.D., and Zhao Q. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289 (2001) 69-74
-
(2001)
Phys. Lett. A
, vol.289
, pp. 69-74
-
-
Liu, S.K.1
Fu, Z.T.2
Liu, S.D.3
Zhao, Q.4
-
28
-
-
0035813363
-
New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations
-
Fu Z.T., Liu S.K., Liu S.D., and Zhao Q. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290 (2001) 72-76
-
(2001)
Phys. Lett. A
, vol.290
, pp. 72-76
-
-
Fu, Z.T.1
Liu, S.K.2
Liu, S.D.3
Zhao, Q.4
-
29
-
-
0036539957
-
The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations
-
Parkes E.J., Duffy B.R., and Abbott P.C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A 295 (2002) 280-286
-
(2002)
Phys. Lett. A
, vol.295
, pp. 280-286
-
-
Parkes, E.J.1
Duffy, B.R.2
Abbott, P.C.3
-
30
-
-
0346094010
-
Nonlinear transform and Jacobi elliptic function solutions of nonlinear equations
-
Liu J., Yang L., and Yang K. Nonlinear transform and Jacobi elliptic function solutions of nonlinear equations. Chaos, Solitons & Fractals 20 (2004) 1157-1164
-
(2004)
Chaos, Solitons & Fractals
, vol.20
, pp. 1157-1164
-
-
Liu, J.1
Yang, L.2
Yang, K.3
-
31
-
-
14944364967
-
The periodic wave solutions for the (3 + 1)-dimensional Klein-Gordon-Schrödinger equations
-
Li X.Y., Yang S., and Wang M.L. The periodic wave solutions for the (3 + 1)-dimensional Klein-Gordon-Schrödinger equations. Chaos, Solitons & Fractals 25 (2005) 629-636
-
(2005)
Chaos, Solitons & Fractals
, vol.25
, pp. 629-636
-
-
Li, X.Y.1
Yang, S.2
Wang, M.L.3
-
32
-
-
13444310842
-
Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation
-
Wang M.L., and Li X.Z. Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos, Solitons & Fractals 24 (2005) 1257-1268
-
(2005)
Chaos, Solitons & Fractals
, vol.24
, pp. 1257-1268
-
-
Wang, M.L.1
Li, X.Z.2
-
33
-
-
1842581473
-
The extended F-expansion method and exact solutions of nonlinear PDEs
-
Liu J., and Yang K.Q. The extended F-expansion method and exact solutions of nonlinear PDEs. Chaos, Solitons & Fractals 22 (2004) 111-121
-
(2004)
Chaos, Solitons & Fractals
, vol.22
, pp. 111-121
-
-
Liu, J.1
Yang, K.Q.2
-
34
-
-
14944374499
-
Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation
-
Wang D.S., and Zhang H.Q. Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation. Chaos, Solitons & Fractals 25 (2005) 601-610
-
(2005)
Chaos, Solitons & Fractals
, vol.25
, pp. 601-610
-
-
Wang, D.S.1
Zhang, H.Q.2
-
35
-
-
26044449660
-
A generalized F-expansion method and its application in high-dimensional nonlinear evolution equation
-
Chen J., He H.S., and Yang K.Q. A generalized F-expansion method and its application in high-dimensional nonlinear evolution equation. Commun. Theor. Phys. (Beijing, China) 44 (2005) 307-310
-
(2005)
Commun. Theor. Phys. (Beijing, China)
, vol.44
, pp. 307-310
-
-
Chen, J.1
He, H.S.2
Yang, K.Q.3
-
36
-
-
0242302715
-
Symbolic computation and new families of exact soliton-like solutions of Konopelchenko-Dubrovsky equations
-
Xia T.C., Lü Z.S., and Zhang H.Q. Symbolic computation and new families of exact soliton-like solutions of Konopelchenko-Dubrovsky equations. Chaos, Solitons & Fractals 20 (2004) 561-566
-
(2004)
Chaos, Solitons & Fractals
, vol.20
, pp. 561-566
-
-
Xia, T.C.1
Lü, Z.S.2
Zhang, H.Q.3
|