-
2
-
-
0003190105
-
-
ibid. A 240, 128 (1957); ibid. A 240, 493 (1957)
-
Vinen W.F., Proc. Roy. Soc. A 240, 114 (1957); ibid. A 240, 128 (1957); ibid. A 240, 493 (1957).
-
(1957)
Proc. Roy. Soc. A
, vol.240
, pp. 114
-
-
Vinen, W.F.1
-
3
-
-
77956959547
-
-
in C. J. Gorter (ed.), North-Holland, Ameterdam
-
Tough J.T., in Progress in Low Temperature Physics, Vol. VIII, C. J. Gorter (ed.), North-Holland, Ameterdam (1955), p. 133.
-
(1955)
Progress in Low Temperature Physics
, vol.8
, pp. 133
-
-
Tough, J.T.1
-
6
-
-
0004185784
-
-
Cambridge University Press, Cambridge
-
Frisch U., (1995). Turbulence. Cambridge University Press, Cambridge
-
(1995)
Turbulence
-
-
Frisch, U.1
-
8
-
-
33845747900
-
-
Equation (1) neglects the intermittency of turbulence. In this work, we does not discuss the intermittency in both classical and quantum turbulence
-
Equation (1) neglects the intermittency of turbulence. In this work, we does not discuss the intermittency in both classical and quantum turbulence.
-
-
-
-
12
-
-
6944256799
-
-
Phys. Fluids 9, 2644 (1997)
-
Nore C., Abid M., and Brachet M.E., Phys. Rev. Lett. 78, 3896 (1997); Phys. Fluids 9, 2644 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 3896
-
-
Nore, C.1
Abid, M.2
Brachet, M.E.3
-
13
-
-
0034818344
-
-
Leadbeater M., Winiecki T., Samuels D.C., Barenghi C.F., Adams C.S., (2001). Phys. Rev. Lett. 86: 1410
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1410
-
-
Leadbeater, M.1
Winiecki, T.2
Samuels, D.C.3
Barenghi, C.F.4
Adams, C.S.5
-
22
-
-
45849155586
-
-
The proportional coefficient α(ζ) is closely related with the vortex length distribution n (ζ) throughout α(ζ) = ζ n (ζ) / L and ∫ d ζ: α(ζ) = 1. The behavior of n (ζ) in quantum turbulence was already discussed by Araki et al. in with using the vortex-filament model. They reported n (ζ) to be some power-law functions of ζ because of the self-similarity, and we can, therefore, expect some power-low structure of α(ζ) from the above equations
-
The proportional coefficient α(ζ) is closely related with the vortex length distribution n (ζ) throughout α(ζ) = ζ n (ζ) / L and ∫ d ζ: α(ζ) = 1. The behavior of n (ζ) in quantum turbulence was already discussed by Araki et al. in T. Araki, M. Tsubota and S. Nemirovskii, Phys. Rev. Lett. 89 145301 (2002) with using the vortex-filament model. They reported n (ζ) to be some power-law functions of ζ because of the self-similarity, and we can, therefore, expect some power-low structure of α(ζ) from the above equations.
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 145301
-
-
Araki, T.1
Tsubota, M.2
Nemirovskii, S.3
-
23
-
-
32844471478
-
-
Bradley D.I., Clubb D.O., Fisher S.N., Guénault A.M., Haley R.P., Matthews C.J., Pickett G.R., Tsepelin V., Zaki K., (2006). Phys. Rev. Lett. 96: 035301
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 035301
-
-
Bradley, D.I.1
Clubb, D.O.2
Fisher, S.N.3
Guénault, A.M.4
Haley, R.P.5
Matthews, C.J.6
Pickett, G.R.7
Tsepelin, V.8
Zaki, K.9
|