-
1
-
-
0002244618
-
A theory of solitary water-waves in the presence of surface tension
-
C. J. AMICK and K. KIRCHGÄSSNER, A theory of solitary water-waves in the presence of surface tension, Arch. Rational Mech. Anal. 105 (1989), 1-49.
-
(1989)
Arch. Rational Mech. Anal.
, vol.105
, pp. 1-49
-
-
Amick, C.J.1
Kirchgässner, K.2
-
3
-
-
0001307276
-
On the structure of the spectra of periodic travelling waves
-
R. A. GARDNER, On the structure of the spectra of periodic travelling waves, J. Math. Pures Appl. 72 (1993), 415-439.
-
(1993)
J. Math. Pures Appl.
, vol.72
, pp. 415-439
-
-
Gardner, R.A.1
-
4
-
-
0036110969
-
Finite-wavelength stability of capillary-gravity solitary waves
-
M. HARAGUS and A. SCHEEL, Finite-wavelength stability of capillary-gravity solitary waves, Comm. Math. Phys. 225 (2002), 487-521.
-
(2002)
Comm. Math. Phys.
, vol.225
, pp. 487-521
-
-
Haragus, M.1
Scheel, A.2
-
5
-
-
0000219244
-
Existence of perturbed solitary wave solutions to a model equation for water waves
-
J. K. HUNTER, and J. SCHEURLE, Existence of perturbed solitary wave solutions to a model equation for water waves, Phys. D 32 (1988), 253-268.
-
(1988)
Phys. D
, vol.32
, pp. 253-268
-
-
Hunter, J.K.1
Scheurle, J.2
-
6
-
-
0001458063
-
Stability of solitary waves in dispersive media described by a fifth-order evolution equation
-
A. T. IL'ICHEV and A. Y. SEMENOV, Stability of solitary waves in dispersive media described by a fifth-order evolution equation, Theoret. Comput. Fluid Dynamics 3 (1992), 307-326.
-
(1992)
Theoret. Comput. Fluid Dynamics
, vol.3
, pp. 307-326
-
-
Il'ichev, A.T.1
Semenov, A.Y.2
-
8
-
-
0031367392
-
Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves
-
E. LOMBARDI, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rational Mech. Anal. 137 (1997), 227-304.
-
(1997)
Arch. Rational Mech. Anal.
, vol.137
, pp. 227-304
-
-
Lombardi, E.1
-
9
-
-
0007165965
-
Non-persistence of homoclinic connections for perturbed integrable reversible systems
-
E. LOMBARDI, Non-persistence of homoclinic connections for perturbed integrable reversible systems, J. Dynam. Differential Equations 11 (1999), 129-208.
-
(1999)
J. Dynam. Differential Equations
, vol.11
, pp. 129-208
-
-
Lombardi, E.1
-
11
-
-
77952762814
-
Oscillatory solitary waves in dispersive media
-
T. KAWAHARA, Oscillatory solitary waves in dispersive media, Phys. Soc. Japan 33 (1972), 260-264.
-
(1972)
Phys. Soc. Japan
, vol.33
, pp. 260-264
-
-
Kawahara, T.1
-
12
-
-
0037242180
-
L2 stability of solitons for KdV equation
-
F. MERLE and L. VEGA, L2 stability of solitons for KdV equation, Int. Math. Res. Not. 13 (2003), 735-753.
-
(2003)
Int. Math. Res. Not.
, vol.13
, pp. 735-753
-
-
Merle, F.1
Vega, L.2
-
14
-
-
0038820105
-
Stability of periodic solutions of conservation laws with viscosity: Analysis of the Evans function
-
M. OH and K. ZUMBRUN, Stability of periodic solutions of conservation laws with viscosity: Analysis of the Evans function, Arch. Rational Mech. Anal. 166 (2003), 99-166.
-
(2003)
Arch. Rational Mech. Anal.
, vol.166
, pp. 99-166
-
-
Oh, M.1
Zumbrun, K.2
-
15
-
-
0038482201
-
Stability of periodic solutions of conservation laws with viscosity: Pointwise bounds on the Green function
-
M. OH and K. ZUMBRUN, Stability of periodic solutions of conservation laws with viscosity: Pointwise bounds on the Green function, Arch. Rational Msch. Anal. 166 (2003), 167-196.
-
(2003)
Arch. Rational Msch. Anal.
, vol.166
, pp. 167-196
-
-
Oh, M.1
Zumbrun, K.2
-
16
-
-
21844510556
-
Asymptotic stability of solitary waves
-
R. L. PEGO and M. I. WEINSTEIN, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), 305-349.
-
(1994)
Comm. Math. Phys.
, vol.164
, pp. 305-349
-
-
Pego, R.L.1
Weinstein, M.I.2
-
18
-
-
0039938860
-
2-perturbations of periodic equilibria of reaction diffusion systems
-
2-perturbations of periodic equilibria of reaction diffusion systems, Non-linear Diff. Eqns. Appl. (NoDEA) 3 (1994), 281-311.
-
(1994)
Non-linear Diff. Eqns. Appl. (NoDEA)
, vol.3
, pp. 281-311
-
-
Scarpellini, B.1
-
19
-
-
0030560044
-
Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation
-
G. SCHNEIDER, Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys. 178 (1996), 679-702.
-
(1996)
Comm. Math. Phys.
, vol.178
, pp. 679-702
-
-
Schneider, G.1
-
20
-
-
0036012969
-
The rigorous approximation of long-wavelength capillarygravity waves
-
G. SCHNEIDER and C. E. WAYNE, The rigorous approximation of long-wavelength capillarygravity waves, Arch. Rational Mech. Anal. 162 (2002), 247-285.
-
(2002)
Arch. Rational Mech. Anal.
, vol.162
, pp. 247-285
-
-
Schneider, G.1
Wayne, C.E.2
-
21
-
-
17444384546
-
The stability of periodic solutions of viscous conservation laws: Large wavelength perturbations
-
D. SERRE, The stability of periodic solutions of viscous conservation laws: Large wavelength perturbations, Comm. PDE 30 (2005), 259-282.
-
(2005)
Comm. PDE
, vol.30
, pp. 259-282
-
-
Serre, D.1
-
22
-
-
0000606083
-
Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave
-
S. M. SUN and M. C. SHEN, Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave, J. Math. Anal. Appl. 172 (1993), 533-566.
-
(1993)
J. Math. Anal. Appl.
, vol.172
, pp. 533-566
-
-
Sun, S.M.1
Shen, M.C.2
-
23
-
-
0001612930
-
Non-existence of truly solitary waves in water with small surface tension
-
S. M. SUN, Non-existence of truly solitary waves in water with small surface tension, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 2191-2228.
-
(1999)
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.
, vol.455
, pp. 2191-2228
-
-
Sun, S.M.1
-
24
-
-
85041933055
-
-
Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney
-
G. B. WHITHAM, Linear and nonlinear waves, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974.
-
(1974)
Linear and Nonlinear Waves
-
-
Whitham, G.B.1
|