메뉴 건너뛰기




Volumn 74, Issue 12, 2006, Pages 1095-1098

The Rayleigh-Taylor instability

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845751999     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.2358158     Document Type: Conference Paper
Times cited : (83)

References (23)
  • 2
    • 33845783969 scopus 로고
    • Simple demonstration of Rayleigh-Taylor instability
    • R. A. Racca and C. H. Annett. "Simple demonstration of Rayleigh-Taylor instability," Am. J. Phys. 53, 484-486 (1985).
    • (1985) Am. J. Phys. , vol.53 , pp. 484-486
    • Racca, R.A.1    Annett, C.H.2
  • 3
    • 85006459228 scopus 로고    scopus 로고
    • Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics
    • R. F. Benjamin, "Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics," Phys. Teach. 37, 332-336 (1999).
    • (1999) Phys. Teach. , vol.37 , pp. 332-336
    • Benjamin, R.F.1
  • 4
    • 0020778068 scopus 로고
    • An overview of Rayleigh-Taylor instability
    • D. H. Sharp, "An overview of Rayleigh-Taylor instability." Physica D 12, 3-18 (1984).
    • (1984) Physica D , vol.12 , pp. 3-18
    • Sharp, D.H.1
  • 5
    • 0002552134 scopus 로고
    • Cambridge, U. P., Cambridge
    • Lord Rayleigh, Scientific Papers (Cambridge, U. P., Cambridge, 1900), Vol. II, pp. 200-207.
    • (1900) Scientific Papers , vol.2 , pp. 200-207
    • Rayleigh, L.1
  • 6
    • 0002418219 scopus 로고
    • The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
    • G. I. Taylor, "The instability of liquid surfaces when accelerated in a direction perpendicular to their planes," Proc. R. Soc. London, Ser. A 201. 192-196 (1950).
    • (1950) Proc. R. Soc. London, Ser. A , vol.201 , pp. 192-196
    • Taylor, G.I.1
  • 7
    • 0002418217 scopus 로고
    • The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II
    • D. J. Lewis, "The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II," Proc. R. Soc. London, Ser. A 202, 81-96 (1950).
    • (1950) Proc. R. Soc. London, Ser. A , vol.202 , pp. 81-96
    • Lewis, D.J.1
  • 8
    • 4344562756 scopus 로고    scopus 로고
    • Large-eddy simulation of coastal upwelling flow
    • A. Cui and R. L. Street, "Large-eddy simulation of coastal upwelling flow," Environmental Fluid Mechanics 4, 197-223 (2004).
    • (2004) Environmental Fluid Mechanics , vol.4 , pp. 197-223
    • Cui, A.1    Street, R.L.2
  • 9
    • 0002227288 scopus 로고
    • Hydrodynamic instabilities of the flame front in white dwarfs
    • V. Bychkov and M. A. Liberman, "Hydrodynamic instabilities of the flame front in white dwarfs," Astron. Astrophys. 16, 727-734 (1995).
    • (1995) Astron. Astrophys. , vol.16 , pp. 727-734
    • Bychkov, V.1    Liberman, M.A.2
  • 10
    • 33845779847 scopus 로고    scopus 로고
    • Compressible Rayleigh-Taylor instabilities in supernova remnants
    • X. Ribeyre, V. T. Tikhonchuk, and S. Bouquet, "Compressible Rayleigh-Taylor instabilities in supernova remnants," Phys. Plasmas 302, 4661-4670 (2004).
    • (2004) Phys. Plasmas , vol.302 , pp. 4661-4670
    • Ribeyre, X.1    Tikhonchuk, V.T.2    Bouquet, S.3
  • 11
    • 0032668407 scopus 로고    scopus 로고
    • Gravity-driven flow of a viscoelastic liquid film along a vertical wall
    • H. I. Anderson and E. N. Dahl, "Gravity-driven flow of a viscoelastic liquid film along a vertical wall," J. Phys. D 32, 1557-1562 (1999).
    • (1999) J. Phys. D , vol.32 , pp. 1557-1562
    • Anderson, H.I.1    Dahl, E.N.2
  • 12
    • 0001410712 scopus 로고    scopus 로고
    • Rayleigh-Taylor instability of steady ablation fronts: The discontinuity model revisited
    • A. R. Piriz, J. Sanz, and L. F. Ibañez, "Rayleigh-Taylor instability of steady ablation fronts: The discontinuity model revisited," Phys. Plasmas 4, 1117-1126 (1997).
    • (1997) Phys. Plasmas , vol.4 , pp. 1117-1126
    • Piriz, A.R.1    Sanz, J.2    Ibañez, L.F.3
  • 15
    • 28844453540 scopus 로고
    • edited by E. Amaldi et al. (The University of Chicago Press, Chicago), article No. 243
    • E. Fermi, The Collected Papers of Enrico Fermi, edited by E. Amaldi et al. (The University of Chicago Press, Chicago, 1962). Vol. 2, article No. 243, pp. 813-815.
    • (1962) The Collected Papers of Enrico Fermi , vol.2 , pp. 813-815
    • Fermi, E.1
  • 16
    • 0002223423 scopus 로고
    • Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities
    • K. O. Mikaelian, "Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 47, 375-383 (1993).
    • (1993) Phys. Rev. E , vol.47 , pp. 375-383
    • Mikaelian, K.O.1
  • 17
  • 19
    • 0345368783 scopus 로고
    • The character of the equilibrium of an incompressible heavy viscous fluid of variable density: An approximate theory
    • R. Hide, "The character of the equilibrium of an incompressible heavy viscous fluid of variable density: An approximate theory," Proc. Cambridge Philos. Soc. 51, 179-201 (1955).
    • (1955) Proc. Cambridge Philos. Soc. , vol.51 , pp. 179-201
    • Hide, R.1
  • 20
    • 0042537879 scopus 로고
    • The effects of surface tension and viscosity on the stability of two superposed fluids
    • W. H. Ride, "The effects of surface tension and viscosity on the stability of two superposed fluids," Proc. Cambridge Philos. Soc. 57, 415-425 (1961).
    • (1961) Proc. Cambridge Philos. Soc. , vol.57 , pp. 415-425
    • Ride, W.H.1
  • 22
    • 0001385716 scopus 로고
    • Effects of surface tension and viscosity on Taylor instability
    • R. Bellman and R. H. Pennington, "Effects of surface tension and viscosity on Taylor instability," Q. Appl. Math. 12, 151-162 (1954).
    • (1954) Q. Appl. Math. , vol.12 , pp. 151-162
    • Bellman, R.1    Pennington, R.H.2
  • 23
    • 33845761126 scopus 로고    scopus 로고
    • note
    • Hide (Ref. 19) independently found the same formula by using a variational method. After this publication Ride (Ref. 20) pointed out that Hide's derivation of Eq. (23) was in error and published a corrected version that resulted in a less accurate approximation than Eq. (23). More recently, Mikaelian (Ref. 16) obtained Eq. (23) by using a moment equation approach that used the inviscid velocity field approximation that we have used here and that was also used by Hide and Ride [Eq. (19) with q ≈ k]. Mikaelian has shown that the other approximations introduced in Hide's derivation were consistent with using such a velocity field and demonstrated that Hide's derivation was actually correct.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.