메뉴 건너뛰기




Volumn 58, Issue 1, 2007, Pages 1-15

Existence of weak solution and semiclassical limit for quantum drift-diffusion model

Author keywords

Entropy inequality; Quantum drift diffusion; Semiclassical limit; Weak solution

Indexed keywords


EID: 33845723710     PISSN: 00442275     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00033-005-0051-4     Document Type: Article
Times cited : (34)

References (19)
  • 1
    • 0003796630 scopus 로고
    • Academic Press, New York
    • R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
    • (1975) Sobolev Spaces
    • Adams, R.1
  • 2
    • 0039394614 scopus 로고    scopus 로고
    • On the stationary quantum drift diffusion model
    • N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model. Z. Angew. Math. Phys., 49: (1998), 251-275.
    • (1998) Z. Angew. Math. Phys. , vol.49 , pp. 251-275
    • Ben Abdallah, N.1    Unterreiter, A.2
  • 4
    • 14544281036 scopus 로고    scopus 로고
    • Analysis of a multi-dimensional parabolic population model with strong cross-diffusion
    • L. Chen and A. Jüngel, Analysis of a multi-dimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal. 36 (2004), 301-322.
    • (2004) SIAM J. Math. Anal. , vol.36 , pp. 301-322
    • Chen, L.1    Jüngel, A.2
  • 5
    • 27744435255 scopus 로고    scopus 로고
    • Quantum hydrodynamic models derived from the entropy principle
    • to appear in
    • P. Degond, F. Méhats and C. Ringhofer, Quantum hydrodynamic models derived from the entropy principle, to appear in Contemp. Math., 2004.
    • (2004) Contemp. Math.
    • Degond, P.1    Méhats, F.2    Ringhofer, C.3
  • 7
    • 0000996833 scopus 로고
    • Form of the quantum potential for use in hydrodynamic equations for semiconductor device modelling
    • D. Ferry and J.-R. Zhou, Form of the quantum potential for use in hydrodynamic equations for semiconductor device modelling, Phys. Rev. B 48 (1993), 7944-7950.
    • (1993) Phys. Rev. B , vol.48 , pp. 7944-7950
    • Ferry, D.1    Zhou, J.-R.2
  • 8
    • 0028413338 scopus 로고
    • The quantum hydrodynamic model for semiconductor devices
    • C. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math. 54 (1994), 409-427.
    • (1994) SIAM J. Appl. Math. , vol.54 , pp. 409-427
    • Gardner, C.1
  • 10
    • 0035415408 scopus 로고    scopus 로고
    • Nonlinear problems on quantum semiconductor modeling
    • A. Jüngel, Nonlinear problems on quantum semiconductor modeling, Nonlin. Anal., 47 (2001), 5873-5884.
    • (2001) Nonlin. Anal. , vol.47 , pp. 5873-5884
    • Jüngel, A.1
  • 13
    • 0035322533 scopus 로고    scopus 로고
    • A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system
    • A. Jüngel and R. Pinnau, A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system. SIAM J. Num. Anal., 39(2):385-406, 2001.
    • (2001) SIAM J. Num. Anal. , vol.39 , Issue.2 , pp. 385-406
    • Jüngel, A.1    Pinnau, R.2
  • 14
    • 30244494628 scopus 로고    scopus 로고
    • Convergent semidiscretization of a nonlinear fourth order parabolic system
    • A. Jüngel and R. Pinnau, Convergent semidiscretization of a nonlinear fourth order parabolic system, Math. Mod. Num. Anal. 37, (2003), 277-289.
    • (2003) Math. Mod. Num. Anal. , vol.37 , pp. 277-289
    • Jüngel, A.1    Pinnau, R.2
  • 15
    • 0038407258 scopus 로고    scopus 로고
    • Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation
    • A. Jüngel and G. Toscani, Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation. Z. Angew. Math. Phys. 54 (2003), 377-386.
    • (2003) Z. Angew. Math. Phys. , vol.54 , pp. 377-386
    • Jüngel, A.1    Toscani, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.