메뉴 건너뛰기




Volumn 33, Issue 1, 2007, Pages 75-85

Combining competitive scheme with slack neurons to solve real-time job scheduling problem

Author keywords

Competitive learning; Hopfield neural network; Scheduling; Slack neuron

Indexed keywords

COMPUTER SIMULATION; CONSTRAINT THEORY; JOB ANALYSIS; PROBLEM SOLVING; REAL TIME SYSTEMS; SCHEDULING;

EID: 33845665257     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2006.04.017     Document Type: Article
Times cited : (11)

References (26)
  • 1
    • 84884676533 scopus 로고    scopus 로고
    • Cardeira, C., & Mammeri, Z. (1994). Neural networks for multiprocessor real-time scheduling. In IEEE proceedings of the sixth Euromicro workshop on real-time systems (pp. 59-64).
  • 2
    • 84884626683 scopus 로고    scopus 로고
    • Cardeira, C., & Mammeri, Z. (1996). Neural network versus max-flow algorithms for multi-processor real-time scheduling, real-time systems. In Proceedings of the eighth Euromicro workshop (pp. 175-180).
  • 3
    • 84884620855 scopus 로고    scopus 로고
    • Cardeira, C., & Mammeri, Z. (1997). Handling precedence constraints with neural network based real-time scheduling algorithms. In Proceedings of ninth Euromicro workshop on real-time systems (pp. 207-214).
  • 4
    • 0032268634 scopus 로고    scopus 로고
    • Chen, R. M., & Huang, Y. M. (1998). Multiconstraint task scheduling in multiprocessor system by neural network. In Proceedings of the IEEE tenth international conference on tools with artificial intelligence, Taipei (pp. 288-294).
  • 5
    • 0035107843 scopus 로고    scopus 로고
    • Competitive neural network to solve scheduling problem
    • Chen R.M., and Huang Y.M. Competitive neural network to solve scheduling problem. Neurocomputing 37 1-4 (2001) 177-196
    • (2001) Neurocomputing , vol.37 , Issue.1-4 , pp. 177-196
    • Chen, R.M.1    Huang, Y.M.2
  • 6
    • 0028539890 scopus 로고
    • Polygonal approximation using a competitive Hopfield neural network
    • Chung P.C., Tsai C.T., Chen E.L., and Sun Y.N. Polygonal approximation using a competitive Hopfield neural network. Pattern Recognition 27 (1994) 1505-1512
    • (1994) Pattern Recognition , vol.27 , pp. 1505-1512
    • Chung, P.C.1    Tsai, C.T.2    Chen, E.L.3    Sun, Y.N.4
  • 7
    • 0020970741 scopus 로고
    • Absolute stability of goal pattern formation and parallel memory storage by competitive neural network
    • Cohen M., and Grossberg S. Absolute stability of goal pattern formation and parallel memory storage by competitive neural network. IEEE Transaction on System, Man, and Cybernetics 13 (1983) 815-826
    • (1983) IEEE Transaction on System, Man, and Cybernetics , vol.13 , pp. 815-826
    • Cohen, M.1    Grossberg, S.2
  • 8
    • 0029461527 scopus 로고    scopus 로고
    • Dixon, M. W., Cole, G. R., & Bellgard, M. I. (1995). Using the Hopfield model with mean-field annealing to solve the routing problem in a communication network. In International conference on neural networks (vol. 5, pp. 2652-2657).
  • 9
    • 0024122470 scopus 로고    scopus 로고
    • Foo, Y. P. S., & Takefuji, T. (1998). Integer linear programming neural networks for job-shop scheduling. In IEEE international conference on neural networks (vol. 2, pp. 341-348).
  • 10
    • 0027846413 scopus 로고    scopus 로고
    • Hanada, A., & Ohnishi, K. (1993). Near optimal jobshop scheduling using neural network parallel computing. In Proceedings of the international conference on industrial electronics, control, and instrumentation (vol. 1, pp. 315-320).
  • 11
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science 79 (1982) 2554-2558
    • (1982) Proceedings of the National Academy of Science , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 12
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Science 81 (1984) 3088-3092
    • (1984) Proceedings of the National Academy of Science , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 13
    • 0021835689 scopus 로고
    • Neural computation of decision in optimization problems
    • Hopfield J.J., and Tank D.W. Neural computation of decision in optimization problems. Biological Cybernetics 52 (1985) 141-152
    • (1985) Biological Cybernetics , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 14
    • 0022504321 scopus 로고
    • Computing with neural circuits: A model
    • Hopfield J.J., and Tank D.W. Computing with neural circuits: A model. Science 233 (1986) 625-633
    • (1986) Science , vol.233 , pp. 625-633
    • Hopfield, J.J.1    Tank, D.W.2
  • 15
    • 0033177857 scopus 로고    scopus 로고
    • Scheduling multiprocessor job with resource and timing constraints using neural network
    • Huang Y.M., and Chen R.M. Scheduling multiprocessor job with resource and timing constraints using neural network. IEEE Transactions on System, Man and Cybernetics, Part B 29 4 (1999) 490-502
    • (1999) IEEE Transactions on System, Man and Cybernetics, Part B , vol.29 , Issue.4 , pp. 490-502
    • Huang, Y.M.1    Chen, R.M.2
  • 16
    • 0026628404 scopus 로고
    • A parallel improvement algorithm for the bipartite subgraph problem
    • Lee K.C., Funabiki N., and Takefuji Y. A parallel improvement algorithm for the bipartite subgraph problem. IEEE Transactions on Neural Networks 3 1 (1992) 139-145
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.1 , pp. 139-145
    • Lee, K.C.1    Funabiki, N.2    Takefuji, Y.3
  • 17
    • 84974687699 scopus 로고
    • Scheduling algorithms for multiprogramming in a hard real-time environment
    • Liu C., and Layland J. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM 20 l (1973) 46-61
    • (1973) Journal of the ACM , vol.20 , Issue.l , pp. 46-61
    • Liu, C.1    Layland, J.2
  • 18
    • 0028699893 scopus 로고    scopus 로고
    • Park, J. G., Park, J. M., Kim, D. S., Lee, C. H., Suh, S. W., & Han, M. S. (1994). Dynamic neural network with heuristic. In IEEE international conference on neural networks (vol. 7, pp. 4650-4654).
  • 19
    • 0030692965 scopus 로고    scopus 로고
    • Silva, M. P., Cardeira, C., & Mammeri Z. (1997). Solving real-time scheduling problems with Hopfield-type neural networks. In EUROMICRO'97 new frontiers of information technology, proceedings of the 23rd EUROMICRO conference (pp. 671-678).
  • 21
    • 84975634948 scopus 로고
    • Neural networks for computation: number representation and programming complexity
    • Takeda M., and Goodman J.W. Neural networks for computation: number representation and programming complexity. Applied Optics 25 (1986) 3033-3046
    • (1986) Applied Optics , vol.25 , pp. 3033-3046
    • Takeda, M.1    Goodman, J.W.2
  • 22
    • 0001663243 scopus 로고
    • An artificial hysteresis binary neuron: a model suppressing the oscillatory behaviors of neuron dynamics
    • Takefuji Y., and Lee K.C. An artificial hysteresis binary neuron: a model suppressing the oscillatory behaviors of neuron dynamics. Biological Cybernetics 64 (1991) 353-356
    • (1991) Biological Cybernetics , vol.64 , pp. 353-356
    • Takefuji, Y.1    Lee, K.C.2
  • 23
    • 0022721216 scopus 로고
    • Simple neural optimization networks: an A/D converter, signal decision circuit and a linear programming circuit
    • Tank D., and Hopfield J.J. Simple neural optimization networks: an A/D converter, signal decision circuit and a linear programming circuit. IEEE Transactions on Circuits and Systems 33 5 (1986) 533-541
    • (1986) IEEE Transactions on Circuits and Systems , vol.33 , Issue.5 , pp. 533-541
    • Tank, D.1    Hopfield, J.J.2
  • 26
    • 0026274725 scopus 로고    scopus 로고
    • Zhang, C. S., Yan, P. F., & Chang, T. (1991). Solving job-shop scheduling problem with priority using neural network. In IEEE international conference on neural networks (pp. 1361-1366).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.