-
1
-
-
0742289086
-
Some results regarding vertex-reinforced random walks
-
Dai, J. J. (2004). Some results regarding vertex-reinforced random walks. Stat. Probab. Lett. 66, 259-266.
-
(2004)
Stat. Probab. Lett.
, vol.66
, pp. 259-266
-
-
Dai, J.J.1
-
2
-
-
0037445866
-
A note on vertex-reinforced random walks
-
Dai, J. J. (2003). A note on vertex-reinforced random walks. Stat. Probab. Lett. 62, 275-280.
-
(2003)
Stat. Probab. Lett.
, vol.62
, pp. 275-280
-
-
Dai, J.J.1
-
4
-
-
0035234601
-
A probabilistic model for establishing of neuron polarity
-
Khanin, K., and Khanin, R. (2001). A probabilistic model for establishing of neuron polarity. J. Math. Biol. 42, 26-40.
-
(2001)
J. Math. Biol.
, vol.42
, pp. 26-40
-
-
Khanin, K.1
Khanin, R.2
-
5
-
-
0037273546
-
Solution to the OK Corral model via decoupling of Friedman's urn
-
Kingman, J. F. C., and Volkov, S. (2003). Solution to the OK Corral model via decoupling of Friedman's urn. J. Theory. Probab. 16, 267-276.
-
(2003)
J. Theory. Probab.
, vol.16
, pp. 267-276
-
-
Kingman, J.F.C.1
Volkov, S.2
-
6
-
-
0001404939
-
Vertex-reinforced random walk
-
Pemantle, R. (1992) Vertex-reinforced random walk. Probab. Theory Relat. Fields 92, 117-136.
-
(1992)
Probab. Theory Relat. Fields
, vol.92
, pp. 117-136
-
-
Pemantle, R.1
-
7
-
-
0033164053
-
Vertex-reinforced random walk on ℤ has finite range
-
Pemantle, R., and Volkov, S. (1999). Vertex-reinforced random walk on ℤ has finite range. Ann. Probab. 27, 1368-1388.
-
(1999)
Ann. Probab.
, vol.27
, pp. 1368-1388
-
-
Pemantle, R.1
Volkov, S.2
-
9
-
-
0004225404
-
-
Translated from the first. Russian edition by R. P. Boas., 2nd ed. Graduate Texts in Mathematics, Springer-Verlag, New York
-
Shiryaev, A. N. (1996). Probability. Translated from the first (1980) Russian edition by R. P. Boas., 2nd ed. Graduate Texts in Mathematics, Springer-Verlag, New York.
-
(1980)
Probability
-
-
Shiryaev, A.N.1
-
10
-
-
4544355873
-
Vertex-reinforced random walk on ℤ eventually gets stuck on five points
-
Tarrès, P. (2004). Vertex-reinforced random walk on ℤ eventually gets stuck on five points. Ann. Probab. 32, 2650-2701.
-
(2004)
Ann. Probab.
, vol.32
, pp. 2650-2701
-
-
Tarrès, P.1
-
11
-
-
0035533093
-
Vertex-reinforced random walk on arbitrary graphs
-
Volkov, S. (2001). Vertex-reinforced random walk on arbitrary graphs. Ann. Probab. 29, 66-91.
-
(2001)
Ann. Probab.
, vol.29
, pp. 66-91
-
-
Volkov, S.1
|