메뉴 건너뛰기




Volumn 86, Issue 5-6, 2007, Pages 877-886

Prediction of combustion efficiency of chicken litter using an artificial neural network approach

Author keywords

ANN training and prediction; Design of experiment; Response surface

Indexed keywords

ALGORITHMS; COMBUSTION; FLUIDIZED BED COMBUSTORS; LEAST SQUARES APPROXIMATIONS; MOISTURE;

EID: 33845603667     PISSN: 00162361     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fuel.2006.09.029     Document Type: Article
Times cited : (14)

References (29)
  • 1
    • 33845651382 scopus 로고    scopus 로고
    • Jawson M, Smith L, Wright R, Amerman D, Bucks D, Lindsay J, et al. Manure and byproduct utilization. National Program Annual Report: FY 2001, Agriculture Resource Service, United States Department of Agriculture; 2001.
  • 2
    • 33845652266 scopus 로고    scopus 로고
    • Bose A. In: Proceedings of the animal waste utilization workshop. US-DOE Federal Energy Technology Center (FETC), Montgomery (VA); 1999. p. 8-9.
  • 3
    • 33845679913 scopus 로고    scopus 로고
    • Lee S, Zhu S. Final Report for Maryland Department of Environment: testing of the animal waste disposal system using advanced fluidized bed combustion technology. Morgan State University; 2002.
  • 20
    • 33845614945 scopus 로고    scopus 로고
    • Zhu S, The constrained optimization of biomass waste co-combustion process in the advanced fluidized bed combustor using applied statistical methods. Doctoral Dissertation, Morgan State University; 2005.
  • 23
    • 33845624249 scopus 로고    scopus 로고
    • MATLAB Version 6.5.0 Help Files. MathWorks Inc.; 2002.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.