-
2
-
-
9144227674
-
The interlace polynomial: A new graph polynomial
-
[ABS04a]
-
[ABS04a] R. Arratia, B. Bollobas, and G.B. Sorkin. The interlace polynomial: a new graph polynomial. Journal of Combinatorial Theory, Series B, 92:199-233, 2004.
-
(2004)
Journal of Combinatorial Theory, Series B
, vol.92
, pp. 199-233
-
-
Arratia, R.1
Bollobas, B.2
Sorkin, G.B.3
-
3
-
-
16244381723
-
A two-variable interlace polynomial
-
[ABS04b], 24.4
-
[ABS04b] R. Arratia, B. Bollobas, and G.B. Sorkin. A two-variable interlace polynomial. Combinatorica, 24.4:567-584, 2004.
-
(2004)
Combinatorica
, pp. 567-584
-
-
Arratia, R.1
Bollobas, B.2
Sorkin, G.B.3
-
5
-
-
0001919985
-
An algorithm for the Tutte polynomials of graphs of bounded treewidth
-
[And98]
-
[And98] A. Andrzejak. An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discrete Mathematics, 190:39-54, 1998.
-
(1998)
Discrete Mathematics
, vol.190
, pp. 39-54
-
-
Andrzejak, A.1
-
7
-
-
0003615227
-
-
[BCSS98]. Springer-Verlag, New York
-
[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-Verlag, New York, 1998.
-
(1998)
Complexity and Real Computation
-
-
Blum, L.1
Cucker, F.2
Shub, M.3
Smale, S.4
-
8
-
-
0022787769
-
The matching polynomial of a polygraph
-
[BGMP86]
-
[BGMP86] D. Babić, A. Graovac, B. Mohar, and T. Pisanski. The matching polynomial of a polygraph. Discrete Applied Mathematics, 15:11-24, 1986.
-
(1986)
Discrete Applied Mathematics
, vol.15
, pp. 11-24
-
-
Babić, D.1
Graovac, A.2
Mohar, B.3
Pisanski, T.4
-
10
-
-
0002741878
-
A determinant formula for the number of ways of coloring a map
-
[Bir12]
-
[Bir12] G.D. Birkhoff. A determinant formula for the number of ways of coloring a map. Annals of Mathematics, 14:42-46, 1912.
-
(1912)
Annals of Mathematics
, vol.14
, pp. 42-46
-
-
Birkhoff, G.D.1
-
14
-
-
0001780070
-
On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic
-
[CMR01]
-
[CMR01] B. Courcelle, J.A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Applied Mathematics, 108(1-2):23-52, 2001.
-
(2001)
Discrete Applied Mathematics
, vol.108
, Issue.1-2
, pp. 23-52
-
-
Courcelle, B.1
Makowsky, J.A.2
Rotics, U.3
-
15
-
-
0002015577
-
Upper bounds to the clique-width of graphs
-
[CO00]
-
[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs. Discrete Applied Mathematics, 101:77-114, 2000.
-
(2000)
Discrete Applied Mathematics
, vol.101
, pp. 77-114
-
-
Courcelle, B.1
Olariu, S.2
-
16
-
-
33750057432
-
Vertex-minors, monadic second-order logic, and a conjecture by Seese
-
[CO06]
-
[CO06] B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic, and a conjecture by Seese. Journal of Combinatorial Theory, Series B, xx:xx-xx, 2006.
-
(2006)
Journal of Combinatorial Theory, Series B
, vol.20
-
-
Courcelle, B.1
Oum, S.2
-
17
-
-
24344452559
-
On the relationship between clique-width and treewidth
-
[CR05]
-
[CR05] D. G. Corneil and U. Rotics. On the relationship between clique-width and treewidth. SIAM J. Comput., 34(4):825-847, 2005.
-
(2005)
SIAM J. Comput.
, vol.34
, Issue.4
, pp. 825-847
-
-
Corneil, D.G.1
Rotics, U.2
-
19
-
-
0003677229
-
-
[Die96] Graduate Texts in Mathematics. Springer
-
[Die96] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 1996.
-
(1996)
Graph Theory
-
-
Diestel, R.1
-
22
-
-
33845535848
-
Counting truth assignments of formulas of bounded tree width and clique-width
-
[FMR06]
-
[FMR06] E. Fischer, J.A. Makowsky, and E.V. Ravve. Counting truth assignments of formulas of bounded tree width and clique-width. Discrete Applied Mathematics, xx:xx-xx, 2006.
-
(2006)
Discrete Applied Mathematics
, vol.20
-
-
Fischer, E.1
Makowsky, J.A.2
Ravve, E.V.3
-
23
-
-
33845544909
-
Proving NP-hardness for clique width
-
[FRRS05]
-
[FRRS05] M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider. Proving NP-hardness for clique width. ECCC, xx:xx-yy, 2005.
-
(2005)
ECCC
, vol.20
-
-
Fellows, M.R.1
Rosamond, F.A.2
Rotics, U.3
Szeider, S.4
-
24
-
-
33744928911
-
Computing the Tutte polynomial on graphs of bounded clique-width
-
[GHN05]. Graph Theoretic Concepts in Computer Science, WG 2005
-
[GHN05] O. Giménez, P. Hliněný, and M. Noy. Computing the Tutte polynomial on graphs of bounded clique-width. In Graph Theoretic Concepts in Computer Science, WG 2005, volume 3787 of Lecture Notes in Computer Science, pages 59-68, 2005.
-
(2005)
Lecture Notes in Computer Science
, vol.3787
, pp. 59-68
-
-
Giménez, O.1
Hliněný, P.2
Noy, M.3
-
25
-
-
33845520473
-
Computing the Tutte polynomial on graphs of bounded clique-width
-
[GHN06]
-
[GHN06] O. Giménez, P. Hliněný, and M. Noy. Computing the Tutte polynomial on graphs of bounded clique-width. XXX, xx:xx-yy, 2006.
-
(2006)
XXX
, vol.20
-
-
Giménez, O.1
Hliněný, P.2
Noy, M.3
-
27
-
-
84974224170
-
On the computational complexity of the Jones and Tutte polynomials
-
[JVW90]
-
[JVW90] F. Jaeger, D.L. Vertigan, and D.J.A. Welsh. On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc., 108:35-53, 1990.
-
(1990)
Math. Proc. Camb. Phil. Soc.
, vol.108
, pp. 35-53
-
-
Jaeger, F.1
Vertigan, D.L.2
Welsh, D.J.A.3
-
28
-
-
84867942957
-
Edge dominating set and colorings on graphs with fixed clique-width
-
[KR03]
-
[KR03] D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics, 126:197-221, 2003.
-
(2003)
Discrete Applied Mathematics
, vol.126
, pp. 197-221
-
-
Kobler, D.1
Rotics, U.2
-
30
-
-
1642322895
-
Algorithmic uses of the Feferman-Vaught theorem
-
[Mak04]
-
[Mak04] J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic, 126:1-3, 2004.
-
(2004)
Annals of Pure and Applied Logic
, vol.126
, pp. 1-3
-
-
Makowsky, J.A.1
-
31
-
-
0032262138
-
Evaluating the Tutte polynomial for graphs of bounded tree-width
-
[Nob98]
-
[Nob98] S.D. Noble. Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics, Probability and Computing, 7:307-321, 1998.
-
(1998)
Combinatorics, Probability and Computing
, vol.7
, pp. 307-321
-
-
Noble, S.D.1
-
33
-
-
38249010667
-
Tutte polynomials computable in polynomial time
-
[OW92]
-
[OW92] J.G. Oxley and D.J.A. Welsh. Tutte polynomials computable in polynomial time. Discrete Mathematics, 109:185-192, 1992.
-
(1992)
Discrete Mathematics
, vol.109
, pp. 185-192
-
-
Oxley, J.G.1
Welsh, D.J.A.2
-
35
-
-
0000192604
-
Acyclic orientations of graphs
-
[Sta73]
-
[Sta73] R. P. Stanley. Acyclic orientations of graphs. Discrete Mathematics, 5:171-178, 1973.
-
(1973)
Discrete Mathematics
, vol.5
, pp. 171-178
-
-
Stanley, R.P.1
-
37
-
-
0000142982
-
The complexity of enumeration and reliability problems
-
[Val79]
-
[Val79] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410-421, 1979.
-
(1979)
SIAM Journal on Computing
, vol.8
, Issue.3
, pp. 410-421
-
-
Valiant, L.G.1
-
38
-
-
84971698102
-
The computational complexity of the Tutte plane: The bipartite case
-
[VW92]
-
[VW92] D.L. Vertigan and D.J.A. Welsh. The computational complexity of the Tutte plane: The bipartite case. Combinatorics, Probability, and Computing, 1:181-187, 1992.
-
(1992)
Combinatorics, Probability, and Computing
, vol.1
, pp. 181-187
-
-
Vertigan, D.L.1
Welsh, D.J.A.2
-
39
-
-
22144480549
-
-
[Wel93]. Complexity: Knots, Colourings and Counting. Cambridge University Press
-
[Wel93] D.J.A. Welsh. Complexity: Knots, Colourings and Counting, volume 186 of London Mathematical Society Lecture Notes Series. Cambridge University Press, 1993.
-
(1993)
London Mathematical Society Lecture Notes Series
, vol.186
-
-
Welsh, D.J.A.1
|