메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages

A discriminative method for semi-automated tumorous tissues segmentation of MR brain images

Author keywords

[No Author keywords available]

Indexed keywords

MR BRAIN IMAGES; PATHOLOGICAL TISSUES; TUMOROUS TISSUES SEGMENTATION; UNLABELED DATA SAMPLING;

EID: 33845514134     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2006.14     Document Type: Conference Paper
Times cited : (2)

References (22)
  • 2
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images
    • Y. Boykov and M. Jolly: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D images. ICCV, Vol. I, pp. 105-112, 2001.
    • (2001) ICCV , vol.1 , pp. 105-112
    • Boykov, Y.1    Jolly, M.2
  • 3
    • 33845529063 scopus 로고    scopus 로고
    • No. 92 in Tegional Conference Series in Mathematics. American Mathematical Society
    • F. Chung: Spectral Graph Theory. No. 92 in Tegional Conference Series in Mathematics. American Mathematical Society, 1997.
    • (1997) Spectral Graph Theory
    • Chung, F.1
  • 4
    • 0742286179 scopus 로고    scopus 로고
    • Spectral grouping using the nyström method
    • C. Fowlkes, S. Belongie, F. Chung and J. Malik: Spectral Grouping Using The Nyström Method. IEEE Trans. on PAMI, Vol. 26(2), pp. 214-225, 2004.
    • (2004) IEEE Trans. on PAMI , vol.26 , Issue.2 , pp. 214-225
    • Fowlkes, C.1    Belongie, S.2    Chung, F.3    Malik, J.4
  • 5
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions and the Bayesian restoration of images
    • S. Geman and D. Geman: Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Trans. on PAMI, Vol. 6(6), pp. 721-742, 1984
    • (1984) IEEE Trans. on PAMI , vol.6 , Issue.6 , pp. 721-742
    • Geman, S.1    Geman, D.2
  • 6
    • 35048861507 scopus 로고    scopus 로고
    • Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials
    • L. Grady and G. Funka-Lea: Multi-Label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials. Workshop on CVAMIA and MMBIA of ECCV, pp. 230-245, 2004.
    • (2004) Workshop on CVAMIA and MMBIA of ECCV , pp. 230-245
    • Grady, L.1    Funka-Lea, G.2
  • 7
    • 78049527893 scopus 로고    scopus 로고
    • Semi-supervised learning via Gaussian processes
    • N. D. Lawrence and M. I. Jordan: Semi-Supervised Learning Via Gaussian Processes. NIPS, Vol. 17, pp. 753-760, 2005.
    • (2005) NIPS , vol.17 , pp. 753-760
    • Lawrence, N.D.1    Jordan, M.I.2
  • 9
    • 0029255247 scopus 로고
    • Shape modeling with front propagation: A level set approach
    • R. Malladi, J.A. Sethian and B. Vemuri: Shape Modeling With Front Propagation: A Level Set Approach. IEEE Trans. on PAMI, Vol. 17(2), pp. 158-175, 1995.
    • (1995) IEEE Trans. on PAMI , vol.17 , Issue.2 , pp. 158-175
    • Malladi, R.1    Sethian, J.A.2    Vemuri, B.3
  • 10
    • 0030153642 scopus 로고    scopus 로고
    • Deformable models in medical image analysis: A survey
    • T. McInerney and D. Terzopoulos: Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis, Vol. 1(2), pp. 91-108, 1996.
    • (1996) Medical Image Analysis , vol.1 , Issue.2 , pp. 91-108
    • McInerney, T.1    Terzopoulos, D.2
  • 12
    • 12844262766 scopus 로고    scopus 로고
    • "Grab cut" - Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov and A. Blake: "Grab Cut" - Interactive Foreground Extraction using Iterated Graph Cuts. SIGGRAPH, Vol. 23(3), pp. 309-314, 2004.
    • (2004) SIGGRAPH , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 13
    • 0030145389 scopus 로고    scopus 로고
    • Fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation
    • J. K. Udupa and S.Samarasekera: Fuzzy Connectedness And Object Definition: Theory, Algorithm And Applications In Image Segmentation. Graphical Models and Image Processing, Vol. 58(3), pp. 246-261, 1996.
    • (1996) Graphical Models and Image Processing , vol.58 , Issue.3 , pp. 246-261
    • Udupa, J.K.1    Samarasekera, S.2
  • 14
    • 0032289422 scopus 로고    scopus 로고
    • Bayesian classification with Gaussian processes
    • C. Williams and D. Barber: Bayesian Classification With Gaussian Processes. IEEE Trans. on PAMI, Vol. 20(12), pp. 1342-1351, 1998.
    • (1998) IEEE Trans. on PAMI , vol.20 , Issue.12 , pp. 1342-1351
    • Williams, C.1    Barber, D.2
  • 15
    • 84899010839 scopus 로고    scopus 로고
    • Seeger using the nyström method to speed up kernel machines
    • C. Williams and M. Seeger: Using the Nyström Method to Speed Up Kernel Machines. NIPS, Vol. 13, pp. 682-688, 2001.
    • (2001) NIPS , vol.13 , pp. 682-688
    • Williams, C.1    Segger, M.2
  • 16
    • 33845535043 scopus 로고    scopus 로고
    • Fuzzy segementaion of cerebral tumorous tissues in MR images via support vector machine and fuzzy clustering
    • Q. WU, W. Dou, Y. Chen and J. Constans: Fuzzy Segementaion of Cerebral Tumorous Tissues in MR Images via Support Vector Machine and Fuzzy Clustering. IFSA.
    • IFSA
    • Wu, Q.1    Dou, W.2    Chen, Y.3    Constans, J.4
  • 17
    • 0032028944 scopus 로고    scopus 로고
    • Snakes, shapes and gradient vector flow
    • C. Xu and J. L. Prince: Snakes, Shapes and Gradient Vector Flow. IEEE Trans. on Image Proc., Vol. 7(3), pp. 359-369, 1998.
    • (1998) IEEE Trans. on Image Proc. , vol.7 , Issue.3 , pp. 359-369
    • Xu, C.1    Prince, J.L.2
  • 18
  • 19
    • 0038381649 scopus 로고    scopus 로고
    • Statistical modeling and conceptualization of visual patterns
    • S.C. Zhu: Statistical Modeling and Conceptualization of Visual Patterns. IEEE Trans. on PAMI, Vol. 25(6), pp. 691-712, 2003.
    • (2003) IEEE Trans. on PAMI , vol.25 , Issue.6 , pp. 691-712
    • Zhu, S.C.1
  • 20
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani and J. LaKerty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. ICML, Vol. 20, pp. 912-919, 2003.
    • (2003) ICML , vol.20 , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    LaKerty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.