-
1
-
-
0004102294
-
-
PhD Thesis, Graduate School of Business Administration, Harvard University
-
WILSON, R. B., A Simplicial Algorithm for Concave Programming, PhD Thesis, Graduate School of Business Administration, Harvard University, 1963.
-
(1963)
A Simplicial Algorithm for Concave Programming
-
-
Wilson, R.B.1
-
3
-
-
0002897657
-
A superlinearly convergent algorithm for constrained optimization problems
-
MAYNE, D. Q., and POLAR, E., A Superlinearly Convergent Algorithm for Constrained Optimization Problems, Mathematical Programming Study, Vol. 16, pp. 45-61, 1982.
-
(1982)
Mathematical Programming Study
, vol.16
, pp. 45-61
-
-
Mayne, D.Q.1
Polar, E.2
-
4
-
-
0022751474
-
A successive quadratic programming algorithm for constraint optimization problems
-
FUKUSHIMA, M., A Successive Quadratic Programming Algorithm for Constraint Optimization Problems, Mathematical Programming, Vol. 35, pp. 253-264, 1986.
-
(1986)
Mathematical Programming
, vol.35
, pp. 253-264
-
-
Fukushima, M.1
-
5
-
-
84978975909
-
A mixed superlinearly convergent algorithm with nonmonotone search for constrained optimizations
-
XU, X., and WANG, W., A Mixed Superlinearly Convergent Algorithm with Nonmonotone Search for Constrained Optimizations, Applied Mathematics: A Journal of Chinese Universities, Vol. 15B, pp. 211-219, 2000.
-
(2000)
Applied Mathematics: A Journal of Chinese Universities
, vol.15 B
, pp. 211-219
-
-
Xu, X.1
Wang, W.2
-
6
-
-
0023382107
-
A superlinearly convergent feasible method for the solution of inequality constrained optimization problems
-
PANIER, E. R., and TITS, A.L., A Superlinearly Convergent Feasible Method for the Solution of Inequality Constrained Optimization Problems, SIAM Journal on Control and Optimization, Vol. 25, pp. 934-950, 1987.
-
(1987)
SIAM Journal on Control and Optimization
, vol.25
, pp. 934-950
-
-
Panier, E.R.1
Tits, A.L.2
-
7
-
-
12244313646
-
A superlinearly feasible method for nonlinear constraints
-
GAO, Z. Y., and WU, F., A Superlinearly Feasible Method for Nonlinear Constraints, Acta Mathematica Sinica, Vol. 40A, pp. 895-900, 1997.
-
(1997)
Acta Mathematica Sinica
, vol.40 A
, pp. 895-900
-
-
Gao, Z.Y.1
Wu, F.2
-
8
-
-
12244273902
-
A class of superlinearly convergent feasible methods for nonlinear constraint optimization
-
JIAN, J. B., and XUE, S.J., A Class of Superlinearly Convergent Feasible Methods for Nonlinear Constraint Optimization, Journal of Mathematical Research and Exposition, Vol. 19, pp. 135-140, 1999.
-
(1999)
Journal of Mathematical Research and Exposition
, vol.19
, pp. 135-140
-
-
Jian, J.B.1
Xue, S.J.2
-
9
-
-
84978999321
-
A superlinearly and quadratic ally convergent SQP type feasible method for constrained optimization
-
JIAN, J. B., ZHANG, K.C., and XUE, S.J., A Superlinearly and Quadratic ally Convergent SQP Type Feasible Method for Constrained Optimization, Applied Mathematics: A Journal of Chinese Universities, Vol. 15B, pp. 319-331, 2000.
-
(2000)
Applied Mathematics: A Journal of Chinese Universities
, vol.15 B
, pp. 319-331
-
-
Jian, J.B.1
Zhang, K.C.2
Xue, S.J.3
-
10
-
-
0011630075
-
Sequential quadratic constrained quadratic programming for general nonlinear programming
-
Edited by H. Wolkowicz, R. Saigal, and L. Vandenberghe, Kluwer Academic Publishers, Boston, Massachusetts
-
KRUK, S., and WOLKOWICZ, H., Sequential Quadratic Constrained Quadratic Programming for General Nonlinear Programming, Handbook of Semidefmite Programming, Edited by H. Wolkowicz, R. Saigal, and L. Vandenberghe, Kluwer Academic Publishers, Boston, Massachusetts, pp. 563-575, 2000.
-
(2000)
Handbook of Semidefmite Programming
, pp. 563-575
-
-
Kruk, S.1
Wolkowicz, H.2
-
11
-
-
0004594843
-
A generalized quadratic programming-based phase-I-phase-II method for inequality constrained optimization
-
WIEST, E. J., and POLAK, E., A Generalized Quadratic Programming-Based Phase-I-Phase-II Method for Inequality Constrained Optimization, Applied Mathematics and Optimization, Vol. 26, pp. 223-252, 1992.
-
(1992)
Applied Mathematics and Optimization
, vol.26
, pp. 223-252
-
-
Wiest, E.J.1
Polak, E.2
-
12
-
-
0242595924
-
A sequential quadratically constrained quadratic programming method for differentiable convex minimization
-
FUKUSHIMA, M., LUO, Z.Q., and PAUL, T., A Sequential Quadratically Constrained Quadratic Programming Method for Differentiable Convex Minimization, SIAM Journal on Optimization, Vol. 13, No. 4, pp. 1089-1119, 2003.
-
(2003)
SIAM Journal on Optimization
, vol.13
, Issue.4
, pp. 1089-1119
-
-
Fukushima, M.1
Luo, Z.Q.2
Paul, T.3
-
13
-
-
0003965764
-
-
Elsevier, Admsterdam, and D. Van Nostrand, Princeton, N.J.
-
ZOUTENDIJK, G., Methods of Feasible Directions, Elsevier, Admsterdam, and D. Van Nostrand, Princeton, N.J., 1960.
-
(1960)
Methods of Feasible Directions
-
-
Zoutendijk, G.1
-
14
-
-
0001555742
-
On the convergence of some feasible direction algorithms for nonlinear programming
-
TOPKIS, D. M., and VEINOTT, A.F., On the Convergence of Some Feasible Direction Algorithms for Nonlinear Programming, SIAM Journal on Control, Vol. 5, pp. 268-279, 1967.
-
(1967)
SIAM Journal on Control
, vol.5
, pp. 268-279
-
-
Topkis, D.M.1
Veinott, A.F.2
-
15
-
-
0002364867
-
Rate of the convergence of a class of methods of feasible directions
-
PIRONNEAU, O., and POLAK, E., Rate of the Convergence of a Class of Methods of Feasible Directions, SIAM Journal on Numerical Analysis, Vol. 10, pp. 161-173, 1973.
-
(1973)
SIAM Journal on Numerical Analysis
, vol.10
, pp. 161-173
-
-
Pironneau, O.1
Polak, E.2
-
16
-
-
0028540063
-
Norm-relaxed method of feasible directions for solving nonlinear programming problems
-
CAWOOD, M. E., and Kostreva, M.M., Norm-Relaxed Method of Feasible Directions for Solving Nonlinear Programming Problems, Journal of Optimization Theory and Applications, Vol. 83, pp. 311-320, 1994.
-
(1994)
Journal of Optimization Theory and Applications
, vol.83
, pp. 311-320
-
-
Cawood, M.E.1
Kostreva, M.M.2
-
17
-
-
0040143446
-
A generalization of the norm-relaxed method of feasible directions
-
CHEN, X., and KOSTREVA, M.M., A Generalization of the Norm-Relaxed Method of Feasible Directions, Applied Mathematics and Computation, Vol. 102, pp. 257-273, 1999.
-
(1999)
Applied Mathematics and Computation
, vol.102
, pp. 257-273
-
-
Chen, X.1
Kostreva, M.M.2
-
18
-
-
0034544425
-
A superlinearly convergent method of feasible directions
-
KOSTREVA, M. M., and CHEN, X., A Superlinearly Convergent Method of Feasible Directions, Applied Mathematics and Computation, Vol. 116, pp. 231-244, 2000.
-
(2000)
Applied Mathematics and Computation
, vol.116
, pp. 231-244
-
-
Kostreva, M.M.1
Chen, X.2
-
19
-
-
0035600660
-
A computationally efficient feasible sequential quadratic programming algorithm
-
LAWRENCE, C. T., and TITS, A.L., A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm, SIAM Journal on Optimization, Vol. 11, pp. 1092-1118, 2001.
-
(2001)
SIAM Journal on Optimization
, vol.11
, pp. 1092-1118
-
-
Lawrence, C.T.1
Tits, A.L.2
-
20
-
-
0142031030
-
A new SQP method of feasible directions for nonlinear programming
-
ZU, Z., and ZANG, K.C., A New SQP Method of Feasible Directions for Nonlinear Programming, Applied Mathematics and Computation, Vol. 148, pp. 121-134, 2004.
-
(2004)
Applied Mathematics and Computation
, vol.148
, pp. 121-134
-
-
Zu, Z.1
Zang, K.C.2
-
21
-
-
0001856065
-
Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions
-
MONTEIOR, R. D. C., and TSUCHYIA, T., Polynomial Convergence of Primal-Dual Algorithms for the Second-Order Cone Programs Based on the MZ-Family of Directions, Mathematical Programming, Vol. 88, pp. 61-83, 2000.
-
(2000)
Mathematical Programming
, vol.88
, pp. 61-83
-
-
Monteior, R.D.C.1
Tsuchyia, T.2
-
22
-
-
12244268175
-
-
PhD Thesis, Xian Jiaotong University, Xian, China
-
JIAN, J. B., Researches on Superlinearly and Quadratically Convergent Algorithms for Nonlinearly Constrained Optimization, PhD Thesis, Xian Jiaotong University, Xian, China, 2000.
-
(2000)
Researches on Superlinearly and Quadratically Convergent Algorithms for Nonlinearly Constrained Optimization
-
-
Jian, J.B.1
|