-
2
-
-
0003371952
-
Amplitude modulation decorrelation for convolutive blind source separation
-
J. Anemüller and B. Kollmeier. Amplitude modulation decorrelation for convolutive blind source separation. In Proc. ICA 2000, pages 215-220, 2000.
-
(2000)
Proc. ICA 2000
, pp. 215-220
-
-
Anemüller, J.1
Kollmeier, B.2
-
3
-
-
0029411030
-
An information-maximization approach to blind separation and blind deconvolution
-
A J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6): 1129-1159, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.6
, pp. 1129-1159
-
-
Bell, A.J.1
Sejnowski, T.J.2
-
4
-
-
0039214318
-
Approximate likelihood for noisy mixtures
-
O. Bermond and J.-F. Cardoso. Approximate likelihood for noisy mixtures. In Proc. ICA, pages 325-330, 1999.
-
(1999)
Proc. ICA
, pp. 325-330
-
-
Bermond, O.1
Cardoso, J.-F.2
-
5
-
-
0031640099
-
On the use of explicit speech modeling in microphone array applications
-
M. Brandstein. On the use of explicit speech modeling in microphone array applications. In Proc. ICASSP, pages 3613-3616, 1998.
-
(1998)
Proc. ICASSP
, pp. 3613-3616
-
-
Brandstein, M.1
-
6
-
-
0242307993
-
Blind separation of noisy Gaussian stationary sources. Application to cosmic microwave background imaging
-
J.-F. Cardoso, H. Snoussi, J. Delabrouille, and G. Patanchon. Blind separation of noisy Gaussian stationary sources. Application to cosmic microwave background imaging. In Proc. EUSIPCO, pages 561-564, 2002.
-
(2002)
Proc. EUSIPCO
, pp. 561-564
-
-
Cardoso, J.-F.1
Snoussi, H.2
Delabrouille, J.3
Patanchon, G.4
-
7
-
-
0027812550
-
Blind beamforming for non-gaussian signals
-
J. F. Cardoso and A. Souloumiac. Blind beamforming for non-gaussian signals. IEE Proceedings F, 140(6):362-370, 1993.
-
(1993)
IEE Proceedings F
, vol.140
, Issue.6
, pp. 362-370
-
-
Cardoso, J.F.1
Souloumiac, A.2
-
8
-
-
0028416938
-
Independent component analysis, a new concept?
-
P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):287-314, 1994.
-
(1994)
Signal Processing
, vol.36
, Issue.3
, pp. 287-314
-
-
Comon, P.1
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistics Society, Series B, 39:1-38, 1977.
-
(1977)
Journal of Royal Statistics Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
35048818525
-
CICAAR: Convolutive ICA with an auto-regressive inverse model
-
M. Dyrholm and L. K. Hansen. CICAAR: Convolutive ICA with an auto-regressive inverse model. In Proc. ICA 2004, pages 594-601, 2004.
-
(2004)
Proc. ICA 2004
, pp. 594-601
-
-
Dyrholm, M.1
Hansen, L.K.2
-
11
-
-
0001387715
-
Mean-field approaches to independent component analysis
-
P. A. Højen-Sørensen, Ole Winther, and Lars Kai Hansen. Mean-field approaches to independent component analysis. Neural Computation, 14(4):889-918, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.4
, pp. 889-918
-
-
Højen-Sørensen, P.A.1
Winther, O.2
Hansen, L.K.3
-
14
-
-
84898994677
-
Blind separation of delayed and convolved sources
-
T.W. Lee, A. J. Bell, and R. H. Lambert. Blind separation of delayed and convolved sources. In Advances of Neural Information Processing Systems, volume 9, page 758, 1997.
-
(1997)
Advances of Neural Information Processing Systems
, vol.9
, pp. 758
-
-
Lee, T.W.1
Bell, A.J.2
Lambert, R.H.3
-
16
-
-
0242404415
-
Independent component analysis for fmri: What is signal and what is noise?
-
M. McKeown, L.K. Hansen, and T.J. Sejnowski. Independent component analysis for fmri: What is signal and what is noise? Current Opinion in Neurobiology, 13 (5):620-629, 2003.
-
(2003)
Current Opinion in Neurobiology
, vol.13
, Issue.5
, pp. 620-629
-
-
McKeown, M.1
Hansen, L.K.2
Sejnowski, T.J.3
-
17
-
-
0030676410
-
Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
-
E. Moulines, J. Cardoso, and E. Cassiat. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In Proc. ICASSP, volume 5, pages 3617-3620, 1997.
-
(1997)
Proc. ICASSP
, vol.5
, pp. 3617-3620
-
-
Moulines, E.1
Cardoso, J.2
Cassiat, E.3
-
19
-
-
33845465629
-
A harmonic excitation state-space approach to blind separation of speech
-
R. K. Olsson and L. K. Hansen. A harmonic excitation state-space approach to blind separation of speech. In Advances in Neural Information Processing Systems, volume 17, pages 993-1000, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 993-1000
-
-
Olsson, R.K.1
Hansen, L.K.2
-
24
-
-
21644483999
-
Maximum likelihood estimates of linear dynamic systems
-
H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8): 1445-1450, 1965.
-
(1965)
AIAA Journal
, vol.3
, Issue.8
, pp. 1445-1450
-
-
Rauch, H.E.1
Tung, F.2
Striebel, C.T.3
-
26
-
-
0033556862
-
A unifying review of linear Gaussian models
-
S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11:305-345, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 305-345
-
-
Roweis, S.1
Ghahramani, Z.2
-
28
-
-
1942420675
-
Optimization with em and expectationConjugate-gradient
-
R. Salakhutdinov, S. T. Roweis, and Z. Ghahramani. Optimization with EM and ExpectationConjugate-Gradient. In International Conference on Machine Learning, volume 20, pages 672-679, 2003.
-
(2003)
International Conference on Machine Learning
, vol.20
, pp. 672-679
-
-
Salakhutdinov, R.1
Roweis, S.T.2
Ghahramani, Z.3
-
29
-
-
84986753417
-
An approach to time series smoothing and forecasting using the em algorithm
-
R. Shumway and D. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. J. Time Series Anal., 3(4):253-264, 1982.
-
(1982)
J. Time Series Anal.
, vol.3
, Issue.4
, pp. 253-264
-
-
Shumway, R.1
Stoffer, D.2
|