-
5
-
-
0000068429
-
-
Böttcher, W.; Brown, G. M.; Sutin, N. Inorg. Chem. 1979, 18, 1447.
-
(1979)
Inorg. Chem.
, vol.18
, pp. 1447
-
-
Böttcher, W.1
Brown, G.M.2
Sutin, N.3
-
6
-
-
0041512581
-
-
Annu. Rev. Phys. Chem. 1964, 15, 155.
-
Marcus, R. A. Trans. N.Y. Acad. Sci. 1957, 19, 423; Annu. Rev. Phys. Chem. 1964, 15, 155.
-
(1957)
Trans. N.Y. Acad. Sci.
, vol.19
, pp. 423
-
-
Marcus, R.A.1
-
7
-
-
0001619747
-
-
Brunschwig, B. S.; Logan, J.; Newton, M. D.; Sutin, N. J. Am. Chem. Soc. 1980, 102, 5798.
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 5798
-
-
Brunschwig, B.S.1
Logan, J.2
Newton, M.D.3
Sutin, N.4
-
9
-
-
0012885868
-
-
Brunschwig, B. S.; Creutz, C.; Macartney, D. H.; Sham, T.-K.; Sutin, N. Faraday Discuss. Chem. Soc. 1982, 74, 113.
-
(1982)
Faraday Discuss. Chem. Soc.
, vol.74
, pp. 113
-
-
Brunschwig, B.S.1
Creutz, C.2
Macartney, D.H.3
Sham, T.-K.4
Sutin, N.5
-
10
-
-
0000420443
-
-
Bernhard, P.; Bürgi, H.-B.; Hauser, J.; Lehmann, M.; Ludi, A. Inorg. Chem. 1982, 21, 3936.
-
(1982)
Inorg. Chem.
, vol.21
, pp. 3936
-
-
Bernhard, P.1
Bürgi, H.-B.2
Hauser, J.3
Lehmann, M.4
Ludi, A.5
-
11
-
-
0000118386
-
-
Szalda, D. J.; Creutz, C.; Mahajan, D.; Sutin, N. Inorg. Chem. 1983, 22, 2372.
-
(1983)
Inorg. Chem.
, vol.22
, pp. 2372
-
-
Szalda, D.J.1
Creutz, C.2
Mahajan, D.3
Sutin, N.4
-
12
-
-
49849126986
-
-
and references therein.
-
Davies, G. Coord. Chem. Rev. 1969, 4, 199 and references therein.
-
(1969)
Coord. Chem. Rev.
, vol.4
, pp. 199
-
-
Davies, G.1
-
13
-
-
33947320837
-
-
Davies, G.; Kirschenbaum, L. J.; Kustin, K. Inorg. Chem. 1968, 7, 146.
-
(1968)
Inorg. Chem.
, vol.7
, pp. 146
-
-
Davies, G.1
Kirschenbaum, L.J.2
Kustin, K.3
-
14
-
-
0002801457
-
-
Mentasti, E.; Pelizzetti, E.; Pramauro, E.; Girauldi, G. Inorg. Chim. Acta 1975, 12, 61.
-
(1975)
Inorg. Chim. Acta
, vol.12
, pp. 61
-
-
Mentasti, E.1
Pelizzetti, E.2
Pramauro, E.3
Girauldi, G.4
-
15
-
-
0001781895
-
-
Pelizzetti, E.; Mentasti, E.; Girauldi, G. Inorg. Chim. Acta 1975, 15, L1.
-
(1975)
Inorg. Chim. Acta
, vol.15
, pp. L1
-
-
Pelizzetti, E.1
Mentasti, E.2
Girauldi, G.3
-
22
-
-
33845552919
-
-
Prog. Inorg. Chem. 1983, 30, 441.
-
Sutin, N. Acc. Chem. Res. 1982, 15, 275; Prog. Inorg. Chem. 1983, 30, 441.
-
(1982)
Acc. Chem. Res.
, vol.15
, pp. 275
-
-
Sutin, N.1
-
23
-
-
33847087449
-
-
Creutz, C.; Chou, M.; Netzel, T. L.; Okumara, M.; Sutin, N. J. Am. Chem. Soc. 1980, 102, 1309.
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 1309
-
-
Creutz, C.1
Chou, M.2
Netzel, T.L.3
Okumara, M.4
Sutin, N.5
-
24
-
-
33847798894
-
-
Lin, C. T.; Böttcher, W.; Chou, M.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1976, 98, 6536.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 6536
-
-
Lin, C.T.1
Böttcher, W.2
Chou, M.3
Creutz, C.4
Sutin, N.5
-
27
-
-
0001526188
-
-
Mohanty, J. G.; Singh, R. P.; Chakravorty, A. Inorg. Chem. 1975, 14, 2178.
-
(1975)
Inorg. Chem.
, vol.14
, pp. 2178
-
-
Mohanty, J.G.1
Singh, R.P.2
Chakravorty, A.3
-
29
-
-
33947470835
-
-
Heidt, L. J.; Koster, G. F.; Johnson, A. M. J. Am. Chem. Soc. 1958, 80, 6471.
-
(1958)
J. Am. Chem. Soc.
, vol.80
, pp. 6471
-
-
Heidt, L.J.1
Koster, G.F.2
Johnson, A.M.3
-
30
-
-
37049133623
-
-
Rosseinsky, D. R.; Nicol, M. J.; Kite, K.; Hill, R. J. J. Chem. Soc, Faraday Trans. I 1974, 2232.
-
(1974)
J. Chem. Soc, Faraday Trans. I
, pp. 2232.
-
-
Rosseinsky, D.R.1
Nicol, M.J.2
Kite, K.3
Hill, R.J.4
-
31
-
-
0000597103
-
-
Biederman, G.; Palombari, E. Acta Chem. Scand., Ser. A 1978, A32, 381.
-
(1978)
Acta Chem. Scand., Ser. A
, vol.A32
, pp. 381
-
-
Biederman, G.1
Palombari, E.2
-
37
-
-
85022299267
-
-
New York
-
Plenum Press: New York, 1976; Vol. 4, p 5.
-
(1976)
Plenum Press
, vol.4
, pp. 5
-
-
-
38
-
-
85022283453
-
-
New York
-
Plenum Press: New York, 1982; Vol. 5, p 185.
-
(1982)
Plenum Press
, vol.5
, pp. 185
-
-
-
40
-
-
0013573584
-
-
Endicott, J. F.; Durham, B.; Kumar, K. Inorg. Chem. 1982, 21, 2437.
-
(1982)
Inorg. Chem.
, vol.21
, pp. 2437
-
-
Endicott, J.F.1
Durham, B.2
Kumar, K.3
-
42
-
-
0000020504
-
-
Montgomery, M.; Chastain, R. V.; Lingafelter, E. C. Acta Crystallogr. 1966, 20, 731.
-
(1966)
Acta Crystallogr.
, vol.20
, pp. 731
-
-
Montgomery, M.1
Chastain, R.V.2
Lingafelter, E.C.3
-
43
-
-
33847085235
-
-
Sham, T. K.; Hastings, J. B.; Perlman, M. L. J. Am. Chem. Soc. 1980, 102, 5904.
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 5904
-
-
Sham, T.K.1
Hastings, J.B.2
Perlman, M.L.3
-
44
-
-
37049092239
-
-
The structure of the Mn(H20)63+ does not reveal appreciable Jahn-Teller distortion; the manganese-oxygen bond lengths are similar, and there is no evidence for exceptionally large thermal parameters.
-
Beattie, J. K.; Best, S. P.; Skelton, B. W.; White, A. H. J. Chem. Soc, Dalton Trans. 1981, 2105. The structure of the Mn(H20)63+ does not reveal appreciable Jahn-Teller distortion; the manganese-oxygen bond lengths are similar, and there is no evidence for exceptionally large thermal parameters.
-
(1981)
J. Chem. Soc, Dalton Trans.
, pp. 2105.
-
-
Beattie, J.K.1
Best, S.P.2
Skelton, B.W.3
White, A.H.4
-
45
-
-
0003430467
-
Infrared and Raman Spectra of Inorganic and Coordination Compounds
-
3rd ed.; Wiley-Interscience: New York, 1978; p 228. (b) The Mn-O stretching frequency in Mn(H20)63+ has not been determined but is assumed to be the same as for Cr(H20)63+.
-
Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", 3rd ed.; Wiley-Interscience: New York, 1978; p 228. (b) The Mn-O stretching frequency in Mn(H20)63+ has not been determined but is assumed to be the same as for Cr(H20)63+.
-
-
-
Nakamoto, K.1
-
46
-
-
0009227138
-
-
In these calculations a value of 1.56 V was used for the reduction potential of the unhydrolyzed Mn(H20)63+ ion.29'31'4411 For the reduction potentials of the ML33+ complexes, the values measured in 2.0 M H2SO.,45 or extrapolated to 2.0 M H2S04 from 0.5 M H2S0446 were employed, (b)
-
In these calculations a value of 1.56 V was used for the reduction potential of the unhydrolyzed Mn(H20)63+ ion.29'31'4411 For the reduction potentials of the ML33+ complexes, the values measured in 2.0 M H2SO.,45 or extrapolated to 2.0 M H2S04 from 0.5 M H2S0446 were employed, (b) Ciavatta, L.; Grimaldi, M. J. Inorg. Nucl. Chem. 1969, 31, 3071.
-
(1969)
J. Inorg. Nucl. Chem.
, vol.31
, pp. 3071
-
-
Ciavatta, L.1
Grimaldi, M.2
-
47
-
-
0004119910
-
Analytical Applications of 1,10-Phenanthroline and Related Compounds
-
Pergamon Press; New York
-
Schilt, A. A. "Analytical Applications of 1,10-Phenanthroline and Related Compounds"; Pergamon Press; New York, 1969; pp 113-122.
-
(1969)
, pp. 113-122
-
-
Schilt, A.A.1
-
49
-
-
84987089663
-
-
This assumption seems reasonable since the electronic coupling in aquo or ammine systems in which a σ∗d electron is transferred is, in general, enhanced relative to πd systems by mediation via the ligands.22 See also:
-
This assumption seems reasonable since the electronic coupling in aquo or ammine systems in which a σ∗d electron is transferred is, in general, enhanced relative to πd systems by mediation via the ligands.22 See also: Logan, J.; Newton, M. D.; Noell, J. O. Int. J. Quantum Chem., Quantum Chem. Symp. 1984, 18, 213.
-
(1984)
Int. J. Quantum Chem., Quantum Chem. Symp.
, vol.18
, pp. 213
-
-
Logan, J.1
Newton, M.D.2
Noell, J.O.3
-
51
-
-
33847089873
-
-
Chou, M.; Creutz, N.; Sutin, N. J. Am. Chem. Soc. 1977, 99, 5615.
-
(1977)
J. Am. Chem. Soc.
, vol.99
, pp. 5615
-
-
Chou, M.1
Creutz, N.2
Sutin, N.3
-
55
-
-
33845557887
-
-
Balzani, V.; Scandola, F.; Orlandi, G.; Sabbatini, N.; Indelli, M. T. J. Am. Chem. Soc. 1981, 103, 3370.
-
(1981)
J. Am. Chem. Soc.
, vol.103
, pp. 3370
-
-
Balzani, V.1
Scandola, F.2
Orlandi, G.3
Sabbatini, N.4
Indelli, M.T.5
-
57
-
-
0020798892
-
-
Endicott, J. F.; Ramasami, T.; Gaswick, D. C.; Tamilarasan, R.; Heeg, M. J.; Brubaker, G. R.; Pyke, S. C. J. Am. Chem. Soc. 1983, 105, 5301.
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 5301
-
-
Endicott, J.F.1
Ramasami, T.2
Gaswick, D.C.3
Tamilarasan, R.4
Heeg, M.J.5
Brubaker, G.R.6
Pyke, S.C.7
-
58
-
-
0000068429
-
-
Bottcher, W.; Brown, G. M.; Sutin, N. Inorg. Chem. 1979, 18, 1447.
-
(1979)
Inorg. Chem.
, vol.18
, pp. 1447
-
-
Bottcher, W.1
Brown, G.M.2
Sutin, N.3
-
59
-
-
85022281611
-
-
Mok, C.-Y.; Zanella, A. W.; Creutz, C.; Sutin, N. Inorg. Chem. 1984, 23, 289.
-
(1984)
Inorg. Chem.
, vol.23
, pp. 289
-
-
Mok, C.-Y.1
Zanella, A.W.2
Creutz, C.3
Sutin, N.4
-
60
-
-
0004176046
-
Inorganic Reactions and Methods
-
Zuckerman, J. J., Ed.; Verlag Chemie: Weinheim/Bergstr., West Germany, in press.
-
Creutz, C.; Sutin, N. In "Inorganic Reactions and Methods"; Zuckerman, J. J., Ed.; Verlag Chemie: Weinheim/Bergstr., West Germany, in press.
-
-
-
Creutz, C.1
Sutin, N.2
-
61
-
-
0002613903
-
-
In a superexchange treatment of the three-site system abc the electronic coupling of the end sites a and c by b is equal to Hab/ΔE∗ provided that ΔE∗ » Hab and H bc(ΔE∗ = (Ec - Ea) = (Ec - Eb) at the intersection of the surfaces for a and c), i.e., the extent of mixing of an excited state configuration with the ground-state configurations is inversely proportional to the vertical energy separation. See, for example: Kuznetsov, A. M.; Ulstrup, J. J. Chem. Phys. 1981, 75, 2047. (b) Although a superexchange framework is being used, this is equivalent to the three-center bonding description used earlier38 and the same criteria that were considered necessary for a strong three-center interaction are also relevant here.
-
In a superexchange treatment of the three-site system abc the electronic coupling of the end sites a and c by b is equal to Hab/ΔE∗ provided that ΔE∗ » Hab and H bc(ΔE∗ = (Ec - Ea) = (Ec - Eb) at the intersection of the surfaces for a and c), i.e., the extent of mixing of an excited state configuration with the ground-state configurations is inversely proportional to the vertical energy separation. See, for example: Halpern, J.; Orgel, L. E. Discuss. Faraday Soc. 1966, 29, 32. Kuznetsov, A. M.; Ulstrup, J. J. Chem. Phys. 1981, 75, 2047. (b) Although a superexchange framework is being used, this is equivalent to the three-center bonding description used earlier38 and the same criteria that were considered necessary for a strong three-center interaction are also relevant here.
-
(1966)
Discuss. Faraday Soc.
, vol.29
, pp. 32
-
-
Halpern, J.1
Orgel, L.E.2
-
62
-
-
33750980336
-
-
Based on the E° of 1.89 V for the -OH/OH" couple60b and a pKa of ≤-20 for H2O+.60c (b) (c) Schwarz, H. A., personal communication.
-
Based on the E° of 1.89 V for the -OH/OH" couple60b and a pKa of ≤-20 for H2O+.60c (b) Schwarz, H. A.; Dodson, R. W. J. Phys. Chem. 1984, 88, 3643. (c) Schwarz, H. A., personal communication.
-
(1984)
J. Phys. Chem.
, vol.88
, pp. 3643
-
-
Schwarz, H.A.1
Dodson, R.W.2
-
63
-
-
84929316143
-
-
Note that the LMCT transition in Co(H20)63+ produces a low-spin Co(II) and it is necessary to correct for the energy difference, E∗(Co(II)), between the vibrationally relaxed low-spin state and the ground state of Co(II) in order to obtain the ΔG° for reaction 19. The estimate of ΔG° is very approximate largely because of the uncertainty in the X value for H20+/H20. An assumption underlying this approach is that the transition in the far-UV spectrum of Co(H20)63+ solutions is ligand to metal rather than solvent to metal in character.
-
Winkler, J., unpublished observations, (b) Note that the LMCT transition in Co(H20)63+ produces a low-spin Co(II) and it is necessary to correct for the energy difference, E∗(Co(II)), between the vibrationally relaxed low-spin state and the ground state of Co(II) in order to obtain the ΔG° for reaction 19. The estimate of ΔG° is very approximate largely because of the uncertainty in the X value for H20+/H20. An assumption underlying this approach is that the transition in the far-UV spectrum of Co(H20)63+ solutions is ligand to metal rather than solvent to metal in character.
-
unpublished observations
-
-
Winkler, J.1
-
65
-
-
85021537164
-
-
Winkler, J. R.; Rice, S. F.; Gray, H. B. Comments Inorg. Chem. 1981, 1, 47.
-
(1981)
Comments Inorg. Chem.
, vol.1
, pp. 47
-
-
Winkler, J.R.1
Rice, S.F.2
Gray, H.B.3
-
67
-
-
0000334033
-
-
Under normal circumstances the spin conversion is likely to be sufficiently rapid for the preequilibrium to be maintained. See, for example: (b) The diffusion-controlled and the maximum activation-controlled rate constants for the preequilibrium spin-change mechanism are KaKskciv., and Kskdiff (M_1 s~'), respectively, where Ks is the spin conversion equilibrium constant. In this model, reactions with faster rate constants involve direct reaction with the ground state in an "ordinary" (but superexchange-enhanced) outer-sphere mechanism.
-
Under normal circumstances the spin conversion is likely to be sufficiently rapid for the preequilibrium to be maintained. See, for example: Dose, E. V.; Hoselton, M. A.; Sutin, N.; Tweedle, M. F.; Wilson, L. J. J. Am. Chem. Soc. 1978, 100, 1141. (b) The diffusion-controlled and the maximum activation-controlled rate constants for the preequilibrium spin-change mechanism are KaKskciv., and Kskdiff (M_1 s~'), respectively, where Ks is the spin conversion equilibrium constant. In this model, reactions with faster rate constants involve direct reaction with the ground state in an "ordinary" (but superexchange-enhanced) outer-sphere mechanism.
-
(1978)
J. Am. Chem. Soc.
, vol.100
, pp. 1141
-
-
Dose, E.V.1
Hoselton, M.A.2
Sutin, N.3
Tweedle, M.F.4
Wilson, L.J.5
-
68
-
-
0001168874
-
-
See, for example: Haim, A. Prog. Inorg. Chem. 1983, 30, 273.
-
See, for example: Sutin, N. Acc. Chem. Res. 1968. 1, 225. Haim, A. Prog. Inorg. Chem. 1983, 30, 273.
-
(1968)
Acc. Chem. Res.
, vol.1
, pp. 225
-
-
Sutin, N.1
-
69
-
-
36749107563
-
-
No structures in which a water molecule is the sole bridging group have been reported. However, double-bridged structures, in which one bridging group is a water molecule and the other a fairly basic oxygen, have been described. The two iron(II) centers in Fe3(P04)2-4H20 (Ludlamite) are bridged by a water molecule and a phosphate oxygen (iron-iron distance 3.27 Å): Abrahams, S. C.; Bernstein, J. L. J. Chem. Phys. 1966, 44, 2223. See also: Abrahams, S. C. J. Chem. Phys. 1966, 44, 2230. Evidence has recently been presented for the presence of a double μ-aquo, μ-oxo bridge in a binuclear copper(II) system (copper-copper distance 3.03 Å): Chadhuri, P.; Ventur, D.; Wieghardt, K.; Peters, E.-M.; Peters, K.; Simon, A. Angew. Chem., Int. Ed. Engl. 1985, 24, 57. (b) The rate constant for protonation of a coordinated water molecule in Cr(H20)63+ has been estimated to be 5.0 ± 10" M"1 s_1, ΔH∗ = 0.5 ± 0.5 kcal mol-1, and ΔS∗ = -36 ± 2 cal deg-1 mol-1: Swift, T. J. Stephenson, T. A. Inorg. Chem. 1966, J, 1100. (c) Theoretical calculations show that the formation of a hydrogen bond to the oxygen in H30+ is endergonic:
-
No structures in which a water molecule is the sole bridging group have been reported. However, double-bridged structures, in which one bridging group is a water molecule and the other a fairly basic oxygen, have been described. The two iron(II) centers in Fe3(P04)2-4H20 (Ludlamite) are bridged by a water molecule and a phosphate oxygen (iron-iron distance 3.27 Å): Abrahams, S. C.; Bernstein, J. L. J. Chem. Phys. 1966, 44, 2223. See also: Abrahams, S. C. J. Chem. Phys. 1966, 44, 2230. Evidence has recently been presented for the presence of a double μ-aquo, μ-oxo bridge in a binuclear copper(II) system (copper-copper distance 3.03 Å): Chadhuri, P.; Ventur, D.; Wieghardt, K.; Peters, E.-M.; Peters, K.; Simon, A. Angew. Chem., Int. Ed. Engl. 1985, 24, 57. (b) The rate constant for protonation of a coordinated water molecule in Cr(H20)63+ has been estimated to be 5.0 ± 10" M"1 s_1, ΔH∗ = 0.5 ± 0.5 kcal mol-1, and ΔS∗ = -36 ± 2 cal deg-1 mol-1: Swift, T. J. Stephenson, T. A. Inorg. Chem. 1966, J, 1100. (c) Theoretical calculations show that the formation of a hydrogen bond to the oxygen in H30+ is endergonic: Newton, M. D. J. Chem. Phys. 1977, 67, 5535.
-
(1977)
J. Chem. Phys.
, vol.67
, pp. 5535
-
-
Newton, M.D.1
-
70
-
-
85022308178
-
-
even for relatively large displacements as in the Co(H20)62+/3+ exchange, is adequately calculated by harmonic oscillator expressions (with nuclear tunneling corrections as appropriate). For the Co(H20)62+/3+ exchange, the difference between the inner-shell reorganization energy for the outer-sphere mechanism calculated with harmonic and Morse potential functions for the M-OH2 bonds is less than 0.3 kcal mol-1 (with the Morse potential giving the larger reorganization energy).68b Interestingly, despite the similarity in the reorganization energies, the nuclear configuration of the outer-sphere transition state is quite different in the harmonic and Morse calculations. The calculation of the inner-shell reorganization energy is somewhat more complicated for the bridged mechanism. The reorganization energy for the ten nonbridging water molecules is presumably similar to the value for the outer-sphere mechanism, while the reorganization energy for the bridging water molecule is quite sensitive to the assumptions made about the cobalt-cobalt separation and the cobalt-oxygen distances in the precursor and transition states. However, calculations68b using reasonable values for these parameters and Morse functions show that the inner-shell reorganization energy in the water-bridged mechanism is unlikely to be more than 1 kcal mol-1 lower than the value for the outer-sphere mechanism. (b) unpublished calculations.
-
The reorganization of the inner-coordination shells, even for relatively large displacements as in the Co(H20)62+/3+ exchange, is adequately calculated by harmonic oscillator expressions (with nuclear tunneling corrections as appropriate). For the Co(H20)62+/3+ exchange, the difference between the inner-shell reorganization energy for the outer-sphere mechanism calculated with harmonic and Morse potential functions for the M-OH2 bonds is less than 0.3 kcal mol-1 (with the Morse potential giving the larger reorganization energy).68b Interestingly, despite the similarity in the reorganization energies, the nuclear configuration of the outer-sphere transition state is quite different in the harmonic and Morse calculations. The calculation of the inner-shell reorganization energy is somewhat more complicated for the bridged mechanism. The reorganization energy for the ten nonbridging water molecules is presumably similar to the value for the outer-sphere mechanism, while the reorganization energy for the bridging water molecule is quite sensitive to the assumptions made about the cobalt-cobalt separation and the cobalt-oxygen distances in the precursor and transition states. However, calculations68b using reasonable values for these parameters and Morse functions show that the inner-shell reorganization energy in the water-bridged mechanism is unlikely to be more than 1 kcal mol-1 lower than the value for the outer-sphere mechanism. (b) Brunschwig, B. S., unpublished calculations.
-
The reorganization of the inner-coordination shells
-
-
Brunschwig, B.S.1
|