메뉴 건너뛰기




Volumn 34, Issue 4, 2006, Pages 2015-2025

Optimal designs which are efficient for lack of fit tests

Author keywords

Efficient maximin power; Linear regression models; Optimal designs to estimate the highest coefficient; Polynomial regression of degree k 1; Testing lack of fit

Indexed keywords


EID: 33845346811     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053606000000597     Document Type: Article
Times cited : (17)

References (24)
  • 1
    • 0037538638 scopus 로고    scopus 로고
    • Optimal designs for testing the functional form of a regression via nonparametric estimation techniques
    • MR1841411
    • BIEDERMANN, S. and DETTE, H. (2001). Optimal designs for testing the functional form of a regression via nonparametric estimation techniques. Statist. Probab. Lett. 52 215-224. MR1841411
    • (2001) Statist. Probab. Lett. , vol.52 , pp. 215-224
    • Biedermann, S.1    Dette, H.2
  • 2
    • 0032346498 scopus 로고    scopus 로고
    • A functional central limit theorem for regression models
    • MR1647677
    • BISCHOFF, W. (1998). A functional central limit theorem for regression models. Ann. Statist. 26 1398-1410. MR1647677
    • (1998) Ann. Statist. , vol.26 , pp. 1398-1410
    • Bischoff, W.1
  • 3
    • 24944581516 scopus 로고    scopus 로고
    • The structure of residual partial sums limit processes of linear regression models
    • MR2026252
    • BISCHOFF, W. (2002). The structure of residual partial sums limit processes of linear regression models. Theory Stoch. Processes 8 23-28. MR2026252
    • (2002) Theory Stoch. Processes , vol.8 , pp. 23-28
    • Bischoff, W.1
  • 4
    • 6744248660 scopus 로고    scopus 로고
    • Asymptotically optimal tests and optimal designs for testing the mean in regression models with applications to change-point problems
    • MR1820743
    • BISCHOFF, W. and MILLER, F. (2000). Asymptotically optimal tests and optimal designs for testing the mean in regression models with applications to change-point problems. Ann. Inst. Statist. Math. 52 658-679. MR1820743
    • (2000) Ann. Inst. Statist. Math. , vol.52 , pp. 658-679
    • Bischoff, W.1    Miller, F.2
  • 5
    • 33746976728 scopus 로고    scopus 로고
    • Efficient lack of fit designs that are optimal to estimate the highest coefficient of a polynomial
    • BISCHOFF, W. and MILLER, F. (2006). Efficient lack of fit designs that are optimal to estimate the highest coefficient of a polynomial. J. Statist. Plann. Inference 136 4239-4249.
    • (2006) J. Statist. Plann. Inference , vol.136 , pp. 4239-4249
    • Bischoff, W.1    Miller, F.2
  • 6
    • 24944582210 scopus 로고    scopus 로고
    • An efficient design for model discrimination and parameter estimation in linear models
    • MR1929174
    • BISWAS, A. and CHAUDHURI, P. (2002). An efficient design for model discrimination and parameter estimation in linear models. Biometrika 89 709-718. MR1929174
    • (2002) Biometrika , vol.89 , pp. 709-718
    • Biswas, A.1    Chaudhuri, P.2
  • 7
    • 84909574881 scopus 로고
    • A basis for the selection of a response surface design
    • MR0108872
    • Box, G. E. P. and DRAPER, N. (1959). A basis for the selection of a response surface design. J. Amer. Statist. Assoc. 54 622-654. MR0108872
    • (1959) J. Amer. Statist. Assoc. , vol.54 , pp. 622-654
    • Box, G.E.P.1    Draper, N.2
  • 8
    • 0041012573 scopus 로고
    • Bayesian D-optimal and model robust designs in linear regression models
    • MR1268391
    • DETTE, H. (1993). Bayesian D-optimal and model robust designs in linear regression models. Statistics 25 27-46. MR1268391
    • (1993) Statistics , vol.25 , pp. 27-46
    • Dette, H.1
  • 10
    • 0040183409 scopus 로고
    • Bayesian optimal designs for linear regression models
    • MR1135170
    • EL-KRUNZ, S. M. and STUDDEN, W. J. (1991). Bayesian optimal designs for linear regression models. Ann. Statist. 19 2183-2208. MR1135170
    • (1991) Ann. Statist. , vol.19 , pp. 2183-2208
    • El-Krunz, S.M.1    Studden, W.J.2
  • 13
    • 0000448225 scopus 로고
    • Optimum designs in regression problems
    • MR0104324
    • KIEFER, J. and WOLFOWITZ, J. (1959). Optimum designs in regression problems. Ann. Math. Statist. 30 271-294. MR0104324
    • (1959) Ann. Math. Statist. , vol.30 , pp. 271-294
    • Kiefer, J.1    Wolfowitz, J.2
  • 16
    • 0346544672 scopus 로고    scopus 로고
    • A two-stage strategy for the construction of D-optimal experimental designs
    • MR1626012
    • MONTEPIEDRA, O. and YEH, A. B. (1998). A two-stage strategy for the construction of D-optimal experimental designs. Comm. Statist. Simulation Comput. 27 377-401. MR1626012
    • (1998) Comm. Statist. Simulation Comput. , vol.27 , pp. 377-401
    • Montepiedra, O.1    Yeh, A.B.2
  • 18
    • 21144466908 scopus 로고
    • Experimental designs for model discrimination
    • MR1224390
    • PUKELSHEIM, F. and ROSENBERGER, J. L. (1993). Experimental designs for model discrimination. J. Amer. Statist. Assoc. 88 642-649. MR1224390
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 642-649
    • Pukelsheim, F.1    Rosenberger, J.L.2
  • 20
    • 0002932504 scopus 로고
    • Design for regression problems with correlated errors
    • MR0192601
    • SACKS, J. and YLVISAKER, D. (1966). Design for regression problems with correlated errors. Ann. Math. Statist. 37 66-89. MR0192601
    • (1966) Ann. Math. Statist. , vol.37 , pp. 66-89
    • Sacks, J.1    Ylvisaker, D.2
  • 22
    • 0004183064 scopus 로고
    • Chapman and Hall, London. MR0606742
    • SILVEY, S. D. (1980). Optimal Design. Chapman and Hall, London. MR0606742
    • (1980) Optimal Design
    • Silvey, S.D.1
  • 23
    • 0001461163 scopus 로고
    • Optimal designs on Tchebycheff points
    • MR0231497
    • STUDDEN, W. J. (1968). Optimal designs on Tchebycheff points. Ann. Math. Statist. 39 1435-1447. MR0231497
    • (1968) Ann. Math. Statist. , vol.39 , pp. 1435-1447
    • Studden, W.J.1
  • 24
    • 0003933260 scopus 로고
    • Designs for approximately linear regression: Two optimality properties of uniform designs
    • MR1130360
    • WIENS, D. P. (1991). Designs for approximately linear regression: Two optimality properties of uniform designs. Statist. Probab. Lett. 12 217-221. MR1130360
    • (1991) Statist. Probab. Lett. , vol.12 , pp. 217-221
    • Wiens, D.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.