메뉴 건너뛰기




Volumn 16, Issue , 2006, Pages 151-171

Multi-objective algorithms for neural networks learning

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845312352     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/11399346_7     Document Type: Article
Times cited : (20)

References (27)
  • 3
    • 34249753618 scopus 로고
    • Support vector networks
    • 160
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-279, 1995. 160
    • (1995) Machine Learning , vol.20 , pp. 273-279
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • In D. Touretzky, G. Hinton, and T. Sejnowski, editors, San Mateo, CA, Morgan Kaufmann. 151
    • S. E. Fahlman. Faster-learning variations on back-propagation: An empirical study. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, Pittsburg, pages 38-51, San Mateo, CA, 1988. Morgan Kaufmann. 151
    • (1988) Proceedings of the 1988 Connectionist Models Summer School, Pittsburg , pp. 38-51
    • Fahlman, S.E.1
  • 6
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Technical report, Image Speech and Intelligent Systems Research Group, University of Southampton
    • S. R. Gunn. Support vector machines for classification and regression. Technical report, Image Speech and Intelligent Systems Research Group, University of Southampton, 1997.
    • (1997)
    • Gunn, S.R.1
  • 8
    • 0025447562 scopus 로고
    • A simple procedure for pruning back-propagation trained neural networks
    • 152
    • Ehud D. Karnin. A simple procedure for pruning back-propagation trained neural networks. IEEE Transactions on Neural Networks, 1(2):239-242, 1990. 152
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.2 , pp. 239-242
    • Karnin, E.D.1
  • 9
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • 152
    • M. C. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from a network via relevance assessment. Advances in Neural Information Processing, vol. 1, pages 107-115, 1989. 152
    • (1989) Advances in Neural Information Processing , vol.1 , pp. 107-115
    • Mozer, M.C.1    Smolensky, P.2
  • 10
    • 0032495423 scopus 로고    scopus 로고
    • Sliding mode algorithm for training multi-layer neural networks
    • January 151
    • Gustavo G. Parma, Antonio P. Braga, and Benjamim R. Menezes. Sliding mode algorithm for training multi-layer neural networks. IEE Electronics Letters, 38(1):97-98, January 1998. 151
    • (1998) IEE Electronics Letters , vol.38 , Issue.1 , pp. 97-98
    • Parma, G.G.1    Braga, A.P.2    Menezes, B.R.3
  • 11
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • In San Francisco, CA, April 151
    • Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural Networks, pages 586-591, San Francisco, CA, April 1993. 151
    • (1993) Proc. of the IEEE Intl. Conf. on Neural Networks , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 12
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • 151, 153
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323:533-536, 1986. 151, 153
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 13
    • 0002252730 scopus 로고
    • Cut-off method with space extension in convex programming problems
    • 155
    • N. Z. Shor. Cut-off method with space extension in convex programming problems. Cybernetics, 12:94-96, 1977. 155
    • (1977) Cybernetics , vol.12 , pp. 94-96
    • Shor, N.Z.1
  • 16
    • 0034331142 scopus 로고    scopus 로고
    • Improving generalization of mlps with multi-objective optimization
    • 151, 152, 156, 157
    • R. A. Teixeira, A. P. Braga, R. H. C. Takahashi, and R. R. Saldanha. Improving generalization of mlps with multi-objective optimization. Neurocomputing, 35(1-4):189-194, 2000. 151, 152, 156, 157
    • (2000) Neurocomputing , vol.35 , Issue.1-4 , pp. 189-194
    • Teixeira, R.A.1    Braga, A.P.2    Takahashi, R.H.C.3    Saldanha, R.R.4
  • 17
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • 152
    • G. A. Hinton. Connectionist learning procedures. Artificial Intelligence, 40:185-234, 1989. 152
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.A.1
  • 18
    • 54249090913 scopus 로고
    • Cours D'Economie Politique
    • Rouse, Lausanne, 163
    • V. Pareto. Cours D'Economie Politique. Rouse, Lausanne, 1896. vols. I and II. 163
    • (1896) , vol.1-2
    • Pareto, V.1
  • 19
    • 33845314203 scopus 로고    scopus 로고
    • Utilização de seção áurea no cálculo de soluções eficientes para treinamento de redes neurais artificiais através de otimização multi-objetivo
    • November 156
    • R. A. Teixeira, A. P. Braga, R. H. C. Takahashi, and R. R. Saldanha. Utilização de seção áurea no cálculo de soluções eficientes para treinamento de redes neurais artificiais através de otimização multi-objetivo. 8th Brazilian Symposium on Neural Networks, November 2004. 156
    • (2004) 8th Brazilian Symposium on Neural Networks
    • Teixeira, R.A.1    Braga, A.P.2    Takahashi, R.H.C.3    Saldanha, R.R.4
  • 21
    • 0037379787 scopus 로고    scopus 로고
    • Training neural networks with a multi-objective sliding mode control algorithm
    • M. A. Costa, A. P. Braga, B. R. de Menezes, G. G. Parma, and R. A. Teixeira. Training neural networks with a multi-objective sliding mode control algorithm. Neurocomputing, 51:467-473, 2003.
    • (2003) Neurocomputing , vol.51 , pp. 467-473
    • Costa, M.A.1    Braga, A.P.2    de Menezes, B.R.3    Parma, G.G.4    Teixeira, R.A.5
  • 22
    • 33845311397 scopus 로고    scopus 로고
    • Improving neural networks generalization with new constructive and pruning methods
    • 158
    • M. A. Costa, A. P. Braga and B. R. de Menezes. Improving neural networks generalization with new constructive and pruning methods. Journal of Intelligent & Fuzzy Systems, 10:1-9, 2003. 158
    • (2003) Journal of Intelligent & Fuzzy Systems , vol.10 , pp. 1-9
    • Costa, M.A.1    Braga, A.P.2    de Menezes, B.R.3
  • 23
    • 33745834241 scopus 로고    scopus 로고
    • {UCI} Repository of machine learning databases
    • University of California, Irvine, Dept. of Information and Computer Sciences 167
    • C.L. Blake and C.J. Merz. {UCI} Repository of machine learning databases. University of California, Irvine, Dept. of Information and Computer Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998. 167
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 24
    • 0003420910 scopus 로고
    • Morgan Kaufmann, In Advances in Neural Information Processing Systems 2 (D. S. Touretzky, Editor), 152
    • S. E. Fahlman and C. Lebiere, The cascade-correlation learning architecture, Morgan Kaufmann, In Advances in Neural Information Processing Systems 2 (D. S. Touretzky, Editor), 1990 152
    • (1990) The Cascade-correlation Learning Architecture
    • Fahlman, S.E.1    Lebiere, C.2
  • 25
    • 0001958391 scopus 로고
    • Study of a growth algorithm for a feedforward network
    • 152
    • Jean-Pierre Nadal, Study of a growth algorithm for a feedforward network, International Journal of Neural Systems, 1(1):55-59, 1989. 152
    • (1989) International Journal of Neural Systems , vol.1 , Issue.1 , pp. 55-59
    • Nadal, J.-P.1
  • 26
    • 0345460528 scopus 로고
    • A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
    • 152
    • Ron Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, http://citeseer.ist.psu.edu/105046.html, 1995. 152
    • (1995)
    • Kohavi, R.1
  • 27
    • 0001942829 scopus 로고
    • Neural Networks and the Bias/Variance Dilemma
    • 152
    • S. Geman and E. Bienenstock and R. Doursat. Neural Networks and the Bias/ Variance Dilemma, Neural Computation, 4(1):1-58, 1992. 152
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.