메뉴 건너뛰기




Volumn 16, Issue , 2006, Pages 507-530

Fuzzy ensemble design through multi-objective fuzzy rule selection

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845305531     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/11399346_22     Document Type: Article
Times cited : (7)

References (36)
  • 1
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
    • 508
    • H.A. Abbass. Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization. Proc. of Congress on Evolutionary Computation, pages 2074-2080, 2003 508
    • (2003) Proc. of Congress on Evolutionary Computation , pp. 2074-2080
    • Abbass, H.A.1
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • 507
    • E. Bauer, R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-139, 1999 507
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • 507
    • L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996 507
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 33750723494 scopus 로고    scopus 로고
    • A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems
    • In: J. Casillas, O. Cordon, F. Herrera, L. Magdalena(eds). Springer, Berlin 508
    • O. Cordon, M.J.D. Jesus, F. Herrera, L. Magdalena, P. Villar. A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems. In: J. Casillas, O. Cordon, F. Herrera, L. Magdalena(eds). Interpretability Issues in Fuzzy Modeling. Springer, Berlin, pp 79-99, 2003 508
    • (2003) Interpretability Issues in Fuzzy Modeling , pp. 79-99
    • Cordon, O.1    Jesus, M.J.D.2    Herrera, F.3    Magdalena, L.4    Villar, P.5
  • 8
    • 0003866267 scopus 로고    scopus 로고
    • Multi-Objective Optimization Using Evolutionary Algorithms
    • John Wiley & Sons, Chichester 511
    • K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Chichester, 2001 511
    • (2001)
    • Deb, K.1
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • 507
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:139-157, 2000 507
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 11
    • 0032595775 scopus 로고    scopus 로고
    • General and efficient multisplitting of numerical attributes
    • 515, 516, 517, 519, 522, 526
    • T. Elomaa, J. Rousu. General and efficient multisplitting of numerical attributes. Machine Learning, 36:201-244, 1999 515, 516, 517, 519, 522, 526
    • (1999) Machine Learning , vol.36 , pp. 201-244
    • Elomaa, T.1    Rousu, J.2
  • 12
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • 507
    • Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139, 1997 507
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: A genetic learning system based on an iterative approach
    • 199 514
    • A. Gonzalez, R. Perez. SLAVE: A genetic learning system based on an iterative approach. IEEE Trans. on Fuzzy Systems, 7:176-191, 199 514
    • IEEE Trans. on Fuzzy Systems , vol.7 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 14
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classiffication problems
    • 508, 513
    • H. Ishibuchi, T. Murata, I.B. Turksen. Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classiffication problems. Fuzzy Sets and Systems, 89: 135-150, 1997 508, 513
    • (1997) Fuzzy Sets and Systems , vol.89 , pp. 135-150
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 15
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • 513
    • H. Ishibuchi, T. Nakashima, T. Morisawa. Voting in fuzzy rule-based systems for pattern classification problems. Fuzzy Sets and Systems, 103: 223-238, 1999 513
    • (1999) Fuzzy Sets and Systems , vol.103 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 16
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • 508
    • H. Ishibuchi, T. Nakashima, T. Murata. Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences, 136: 109-133, 2001 508
    • (2001) Information Sciences , vol.136 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 17
    • 23944451642 scopus 로고    scopus 로고
    • Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining
    • Springer, Berlin 512
    • H. Ishibuchi, T. Nakashima, M. Nii. Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining. Springer, Berlin, 2004 512
    • (2004)
    • Ishibuchi, H.1    Nakashima, T.2    Nii, M.3
  • 19
    • 0028482107 scopus 로고
    • Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka. Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms. Fuzzy Sets and Systems, 65: 237-253, 1994
    • (1994) Fuzzy Sets and Systems , vol.65 , pp. 237-253
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 20
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. on Fuzzy Systems, 3: 260-270, 1995
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 23
    • 3543091439 scopus 로고    scopus 로고
    • Comparison of heuristic criteria for fuzzy rule selection in classification problems
    • 514
    • H. Ishibuchi, T. Yamamoto. Comparison of heuristic criteria for fuzzy rule selection in classification problems. Fuzzy Optimization and Decision Making, 3: 119-139, 2004 514
    • (2004) Fuzzy Optimization and Decision Making , vol.3 , pp. 119-139
    • Ishibuchi, H.1    Yamamoto, T.2
  • 24
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • H. Ishibuch, T. Yamamoto. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems, 141: 59-88, 2004
    • (2004) Fuzzy Sets and Systems , vol.141 , pp. 59-88
    • Ishibuch, H.1    Yamamoto, T.2
  • 25
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight speciffication in fuzzy rule-based classification systems
    • (in press). 512
    • H. Ishibuchi, T. Yamamoto. Rule weight speciffication in fuzzy rule-based classification systems. IEEE Trans. on Fuzzy Systems, 2005 (in press). 512
    • (2005) IEEE Trans. on Fuzzy Systems
    • Ishibuchi, H.1    Yamamoto, T.2
  • 28
    • 33750705322 scopus 로고    scopus 로고
    • Accurate, transparent and compact fuzzy models by multi-objective evolutionary algorithms
    • In: Casillas J, Cordon O, Herrera F, Magdalena L (eds) Springer, Berlin 508
    • F. Jimenez, A.F. Gomez-Skarmeta, G. Sanchez, H. Roubos, R. Babuska. Accurate, transparent and compact fuzzy models by multi-objective evolutionary algorithms. In: Casillas J, Cordon O, Herrera F, Magdalena L (eds) Interpretability Issues in Fuzzy Modeling. Springer, Berlin, pp 431-451, 2003 508
    • (2003) Interpretability Issues in Fuzzy Modeling , pp. 431-451
    • Jimenez, F.1    Gomez-Skarmeta, A.F.2    Sanchez, G.3    Roubos, H.4    Babuska, R.5
  • 30
    • 33845294631 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization approach to constructing neural network ensembles for regression
    • In: Coello CAC, Lamont GB (eds) World Scientific, Singapore 508
    • Y. Jin, T. Okabe, B. Sendhoff Evolutionary multi-objective optimization approach to constructing neural network ensembles for regression. In: Coello CAC, Lamont GB (eds) Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore, pp 653-673, 2004 508
    • (2004) Applications of Multi-Objective Evolutionary Algorithms , pp. 653-673
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 33
    • 0003500248 scopus 로고    scopus 로고
    • C4.5: Programs for Machine Learning
    • Morgan Kaufmann, San Mateo. 515
    • J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo. 515
    • Quinlan, J.R.1
  • 36
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • 508
    • H. Wang, S. Kwong, Y. Jin, W. Wei, K.F. Man. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 149: 149-186, 2005 508
    • (2005) Fuzzy Sets and Systems , vol.149 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.