메뉴 건너뛰기




Volumn 110, Issue 12, 1988, Pages 3747-3754

Fivefold-Diamond Structure of Adamantane-1,3,5,7-tetracarboxylic Acid

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845280219     PISSN: 00027863     EISSN: 15205126     Source Type: Journal    
DOI: 10.1021/ja00220a005     Document Type: Article
Times cited : (374)

References (17)
  • 2
    • 84985609327 scopus 로고
    • A somewhat comparable structure of interest in the present context has recently been derived for Cd(SC6H5)2
    • A somewhat comparable structure of interest in the present context has recently been derived for Cd(SC6H5)2: Craig, D.; Dance, I. G.; Garbutt, R. Angew. Chem., Int. Ed. Engl. 1986, 25, 165.
    • (1986) Angew. Chem., Int. Ed. Engl. , vol.25 , pp. 165
    • Craig, D.1    Dance, I.G.2    Garbutt, R.3
  • 3
    • 0004041033 scopus 로고
    • Instead of a slightly distorted (cubic) diamondlike structure (zinc-blende, sphalerite) of 1 a slightly distorted hexagonal diamondlike structure (wurtzite) would be a reasonable alternative. However, according to model building the interpenetration possibilities of several wurtzite-type lattices appear more restricted than of diamond-type lattices. A very readable monograph on diamond has recently appeared Adam Hilger: Bristol, U.K. For hexagonal diamond (lonsdaleite), see: (a) Frondel, C.; Marvin, U. B. Nature (London) 1967, 214, 587. Hanneman, R. E.; Strong, H. M.; Bundy, F. P. Science (Washington, D.C.) 1967, 155, 995.
    • Instead of a slightly distorted (cubic) diamondlike structure (zinc-blende, sphalerite) of 1 a slightly distorted hexagonal diamondlike structure (wurtzite) would be a reasonable alternative. However, according to model building the interpenetration possibilities of several wurtzite-type lattices appear more restricted than of diamond-type lattices. A very readable monograph on diamond has recently appeared: Davies, G. Diamond; Adam Hilger: Bristol, U.K., 1984. For hexagonal diamond (lonsdaleite), see: (a) Frondel, C.; Marvin, U. B. Nature (London) 1967, 214, 587. Hanneman, R. E.; Strong, H. M.; Bundy, F. P. Science (Washington, D.C.) 1967, 155, 995.
    • (1984) Diamond
    • Davies, G.1
  • 4
    • 0001697706 scopus 로고
    • Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Macromolecules 1986, 19, 2197. Note the interesting relationships with mathematical minimal surfaces discussed in these papers. It is noted further that the lattice type of the intermetallic Zintl phase NaTl corresponds to a mixed double-diamond structure with a diamond lattice formed by the thallium atoms and another symmetrically interpenetrating one (cf., Figure 3) of the same size made up of the sodium atoms. See: Lan-dolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik; Springer: Berlin, West Germany, 1955; Vol. 1, Part 4, p 30. Other inorganic examples of double-diamondlike structures are provided by the silicate mineral neptunite, by Cu2O (cuprite), Zn(CN)2 and Cd(CN)2, and by three high-pressure modifications of ice: Cannillo, E.; Mazzi, F.; Rossi, G. Acta Crystallogr, 1966, 21, 200. Kamb, B.; Davis, B. L. Proc. Natl. Acad. Sci. U.S.A. 1964, 52, 1433. Kamb, B. Science (Washington D.C.) 1965, 150, 205. See also: Liebau, F. Structural Chemistry of Silicates Springer: Berlin, West Germany, 1985; p 128.
    • Longley, W.; McIntosh, T. J. Nature (London) 1983, 303, 612. Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Macromolecules 1986, 19, 2197. Note the interesting relationships with mathematical minimal surfaces discussed in these papers. It is noted further that the lattice type of the intermetallic Zintl phase NaTl corresponds to a mixed double-diamond structure with a diamond lattice formed by the thallium atoms and another symmetrically interpenetrating one (cf., Figure 3) of the same size made up of the sodium atoms. See: Lan-dolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik; Springer: Berlin, West Germany, 1955; Vol. 1, Part 4, p 30. Other inorganic examples of double-diamondlike structures are provided by the silicate mineral neptunite, by Cu2O (cuprite), Zn(CN)2 and Cd(CN)2, and by three high-pressure modifications of ice: Cannillo, E.; Mazzi, F.; Rossi, G. Acta Crystallogr, 1966, 21, 200. Kamb, B.; Davis, B. L. Proc. Natl. Acad. Sci. U.S.A. 1964, 52, 1433. Kamb, B. Science (Washington D.C.) 1965, 150, 205. See also: Liebau, F. Structural Chemistry of Silicates; Springer: Berlin, West Germany, 1985; p 128.
    • (1983) J. Nature (London) , vol.303 , pp. 612
    • Longley, W.1    McIntosh, T.2
  • 7
    • 0001559707 scopus 로고
    • The tetragonal crystals of 1 are optically uniaxial positive: ncD(||c) = 1.6512 (5), n0D(⊥c) = 1.5909 (5); n̅D = (1.6512 + 1.5909 + 1.5909)/3 = 1.6110. These refractive indices were measured by O, Mcdenbach. Bochum, to whom we extend our appreciation, on a microrefractometer recently designed by himself
    • The tetragonal crystals of 1 are optically uniaxial positive: ncD(||c) = 1.6512 (5), n0D(⊥c) = 1.5909 (5); n̅D = (1.6512 + 1.5909 + 1.5909)/3 = 1.6110. These refractive indices were measured by O, Mcdenbach. Bochum, to whom we extend our appreciation, on a microrefractometer recently designed by himself: Medenbach O. Fortschr. Mineral 1985, 63, 111.
    • (1985) Fortschr. Mineral , vol.63 , pp. 111
    • Medenbach, O.1
  • 15
    • 0000136729 scopus 로고
    • For comparison with 5, the crystal structure of pentaerythritol, C-(CH2OH)4, appears to be of interest. This tetraalcohol also crystallizes tetragonally yet does not form diamondoid lattices. Presumably, this is at least partly due to the less suitable directionality of the hydrogen bonds of pentaerythritol as suggested by model considerations. Numerous crystallographic studies on pentaerythritol have been reported; see, e.g.: Llewellyn, F. J.; Cox, E. G.; Goodwin, T. H. J. Chem. Soc. 1937, 883.
    • For comparison with 5, the crystal structure of pentaerythritol, C-(CH2OH)4, appears to be of interest. This tetraalcohol also crystallizes tetragonally yet does not form diamondoid lattices. Presumably, this is at least partly due to the less suitable directionality of the hydrogen bonds of pentaerythritol as suggested by model considerations. Numerous crystallographic studies on pentaerythritol have been reported; see, e.g.: Eilerman, D.; Rudman, R. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1979, B35, 2458. Llewellyn, F. J.; Cox, E. G.; Goodwin, T. H. J. Chem. Soc. 1937, 883.
    • (1979) Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. , vol.B35 , pp. 2458
    • Eilerman, D.1    Rudman, R.2
  • 17
    • 84981837534 scopus 로고
    • Rice, L. M.; Scott, K. R. J. Org. Chem. 1967, 32, 1966. Anteunis, M.; Geens, A.; van Cauwenberghe, R. Bull. Soc. Chim. Belg. 1973, 82, 573.
    • Farges, G.; Dreiding, A. S. Helv. Chim. Acta 1966, 49, 552. Rice, L. M.; Scott, K. R. J. Org. Chem. 1967, 32, 1966. Anteunis, M.; Geens, A.; van Cauwenberghe, R. Bull. Soc. Chim. Belg. 1973, 82, 573.
    • (1966) Helv. Chim. Acta , vol.49 , pp. 552
    • Farges, G.1    Dreiding, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.