-
1
-
-
84975372121
-
-
(b) Criegee, R.; Marchand, B.; Wannowius, H. Justus Liebigs Ann. Chem. 1942, 550, 99. (c) Schroder, M. Chem. Rev. 1980, 80, 187–213
-
(a) Criegee, R. Justus Liebigs Ann. Chem. 1936, 522, 75. (b) Criegee, R.; Marchand, B.; Wannowius, H. Justus Liebigs Ann. Chem. 1942, 550, 99. (c) Schroder, M. Chem. Rev. 1980, 80, 187–213.
-
(1936)
Justus Liebigs Ann. Chem.
, vol.522
, pp. 75
-
-
Criegee, R.1
-
2
-
-
49549130554
-
-
(b) Sharpless, K. B.; Akashi, K. J. Am. Chem. Soc. 1976, 98, 1986. (c) Akashi, K.; Palermo, R. E.; Sharpless, K. B. J. Org. Chem. 1978, 43, 2063. (d) Ray, R.; Matteson, D. S. Tetrahedron Lett. 1980, 21, 449. (e) Myers, R. S.; Michaelson, R. C.; Austin, R. G., U.S. Patents 4496778 and 4496779 and others cited therein. (3) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102 4263
-
(a) VanRheenen, V.; Kelly, R. C.; Cha, D. F. Tetrahedron Lett. 1976, 1973. (b) Sharpless, K. B.; Akashi, K. J. Am. Chem. Soc. 1976, 98, 1986. (c) Akashi, K.; Palermo, R. E.; Sharpless, K. B. J. Org. Chem. 1978, 43, 2063. (d) Ray, R.; Matteson, D. S. Tetrahedron Lett. 1980, 21, 449. (e) Myers, R. S.; Michaelson, R. C.; Austin, R. G., U.S. Patents 4496778 and 4496779 and others cited therein. (3) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263.
-
(1976)
Tetrahedron Lett.
, pp. 1973
-
-
VanRheenen, V.1
Kelly, R.C.2
Cha, D.F.3
-
3
-
-
85022235921
-
3 stoichiometric conditions (in toluene at room temperature) and yielded (R, R)-threo-hydro-benzoin of 99% ee
-
Upon reexamination, however, all the enantiomeric excesses reported in ref 3 are low (unpublished results of present authors, see also ref 5c). The acetate analogue of 1, for example, affords the R, R-diol from stilbene in 94% ee not in 83% ee as recorded in ref 3. Alkaloid 1 is the best of 20 related derivatives examined. The structure given for dihydroquinine acetate in ref 3 is wrong: the configuration at carbon-9 should be R not S
-
3 stoichiometric conditions (in toluene at room temperature) and yielded (R,R)-threo-hydro-benzoin of 99% ee. Upon reexamination, however, all the enantiomeric excesses reported in ref 3 are low (unpublished results of present authors, see also ref 5c). The acetate analogue of 1, for example, affords the R,R-diol from stilbene in 94% ee not in 83% ee as recorded in ref 3. Alkaloid 1 is the best of 20 related derivatives examined. The structure given for dihydroquinine acetate in ref 3 is wrong: the configuration at carbon-9 should be R not S.
-
-
-
-
4
-
-
85022265244
-
Stoichiometric, asymmetric osmylations involving external chiral amine ligands reported by other groups
-
(b) Tokles, M.; Snyder, J. K. Tetrahedron Lett. 1986, 27, 3951. (c) Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L.; Stefanelli, S. Tetrahedron Lett. 1987, 28, 3139. (d) Tomioka, K.; Nakajima, M.; Koga, K. J. Am. Chem. Soc. 1987, 109, 6213. Asymmetric osmylations involving internal chiral ligands: (e) Johnson, C. R.; Barbachyn, M.R.J. Am. Chem. Soc. 1984, 106, 2459. (0 Hauser, F. M.; Ellenberger, S. R.; Clardy, J. C.; Bass, L. S. J. Am. Chem. Soc. 1984, 106, 2458. (g) Hassine, B. B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1985, 94, 759. Catalytic asymmetric osmylation: (h) Kokubo, T.; Sugimoto, T.; Uchida, T.; Tanimoto, S.; Okano, M. J. Chem. Soc., Chem. Commun. 1983, 769. (8) We know of no previous reports of cinchona alkaloid derivatives accelerating a transition-metal-catalyzed process. However, due mainly to the contributions of the Wynberg group in Groningen, this family of alkaloids has had an important influence on the development of abiological asymmetric catalysis, see: Smaardijk, Ab. A.; Wynberg, H. J. Org. Chem. 1987, 52, 135. Wynberg, H. “Asymmetric Catalysis by Cinchona Alkaloids” In Topics in Stereochemistry; Eliel, E., Wilen, S., Eds.; Wiley-Interscience: New York, 1986; Vol. 16
-
Stoichiometric, asymmetric osmylations involving external chiral amine ligands reported by other groups: (a) Yamada, T.; Narasaka, K. Chem. Lett. 1986, 131. (b) Tokles, M.; Snyder, J. K. Tetrahedron Lett. 1986, 27, 3951. (c) Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L.; Stefanelli, S. Tetrahedron Lett. 1987, 28, 3139. (d) Tomioka, K.; Nakajima, M.; Koga, K. J. Am. Chem. Soc. 1987, 109, 6213. Asymmetric osmylations involving internal chiral ligands: (e) Johnson, C. R.; Barbachyn, M.R.J. Am. Chem. Soc. 1984, 106, 2459. (0 Hauser, F. M.; Ellenberger, S. R.; Clardy, J. C.; Bass, L. S. J. Am. Chem. Soc. 1984, 106, 2458. (g) Hassine, B. B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1985, 94, 759. Catalytic asymmetric osmylation: (h) Kokubo, T.; Sugimoto, T.; Uchida, T.; Tanimoto, S.; Okano, M. J. Chem. Soc., Chem. Commun. 1983, 769. (8) We know of no previous reports of cinchona alkaloid derivatives accelerating a transition-metal-catalyzed process. However, due mainly to the contributions of the Wynberg group in Groningen, this family of alkaloids has had an important influence on the development of abiological asymmetric catalysis, see: Smaardijk, Ab. A.; Wynberg, H. J. Org. Chem. 1987, 52, 135. Wynberg, H. “Asymmetric Catalysis by Cinchona Alkaloids” In Topics in Stereochemistry; Eliel, E., Wilen, S., Eds.; Wiley-Interscience: New York, 1986; Vol. 16.
-
(1986)
Chem. Lett.
, vol.131
-
-
Yamada, T.1
Narasaka, K.2
-
5
-
-
85022262599
-
Given the architecturally interesting ligands needed to influence the stereochemical course of a catalytic process, one intuitively expects ligand-decelerated catalysis to prevail, but, though probably rare, ligand-accelerated catalysis has intriguing implications for selective catalysis
-
In fact the titanium-catalyzed asymmetric epoxidation is another example of a process dependant on ligand-accelerated catalysis (Finn, M. G. Ph. D. Dissertation, Massachusetts Institute of Technology, Cambridge Massachusetts
-
Given the architecturally interesting ligands needed to influence the stereochemical course of a catalytic process, one intuitively expects ligand-decelerated catalysis to prevail, but, though probably rare, ligand-accelerated catalysis has intriguing implications for selective catalysis. In fact the titanium-catalyzed asymmetric epoxidation is another example of a process dependant on ligand-accelerated catalysis (Finn, M. G. Ph. D. Dissertation, Massachusetts Institute of Technology, Cambridge Massachusetts, 1985).
-
(1985)
-
-
-
7
-
-
85022293574
-
X-ray structure determined for the osmium tetroxide complex of the dimethyl carbamate
-
analogue of 1 unpublished results (13) For more highly substituted olefins, steps involving the osmate ester may become turnover limiting. The presence of the alkaloid also seems to affect such cases, but its mode(s) of action remain to be established
-
X-ray structure determined for the osmium tetroxide complex of the dimethyl carbamate analogue of 1 (Rao, P.; Jacobsen, E. N.; Lippard, S. J.; Sharpless, K. B., unpublished results). (13) For more highly substituted olefins, steps involving the osmate ester may become turnover limiting. The presence of the alkaloid also seems to affect such cases, but its mode(s) of action remain to be established.
-
-
-
Rao, P.1
Jacobsen, E.N.2
Lippard, S.J.3
Sharpless, K.B.4
|