-
1
-
-
33845218036
-
-
L. Landau, Physique Statistique, Mir Editions, Moscow, 1964
-
-
-
-
3
-
-
0001749636
-
General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium
-
Ruelle D. General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A 245 (1998) 220-224
-
(1998)
Phys. Lett. A
, vol.245
, pp. 220-224
-
-
Ruelle, D.1
-
4
-
-
0033246861
-
Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics
-
Ruelle D. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95 (1999) 393-468
-
(1999)
J. Stat. Phys.
, vol.95
, pp. 393-468
-
-
Ruelle, D.1
-
5
-
-
0001507805
-
Correlation functions and relaxation properties in chaotic dynamics and statistical mechanics
-
Falcioni M., Isola S., and Vulpiani A. Correlation functions and relaxation properties in chaotic dynamics and statistical mechanics. Phys. Lett. A 144 (1990) 341-346
-
(1990)
Phys. Lett. A
, vol.144
, pp. 341-346
-
-
Falcioni, M.1
Isola, S.2
Vulpiani, A.3
-
6
-
-
0012019173
-
The relevance of chaos for the linear response theory
-
Falcioni M., and Vulpiani A. The relevance of chaos for the linear response theory. Phys. A 215 (1995) 481-494
-
(1995)
Phys. A
, vol.215
, pp. 481-494
-
-
Falcioni, M.1
Vulpiani, A.2
-
7
-
-
0141455126
-
Relaxation of finite perturbations: Beyond the fluctuation-response relation
-
Boffetta G., Lacorata G., Musacchio S., and Vulpiani A. Relaxation of finite perturbations: Beyond the fluctuation-response relation. Chaos 13 (2003) 806
-
(2003)
Chaos
, vol.13
, pp. 806
-
-
Boffetta, G.1
Lacorata, G.2
Musacchio, S.3
Vulpiani, A.4
-
8
-
-
33646984047
-
Linear response of the Lorenz system
-
Reick C. Linear response of the Lorenz system. Phys. Rev. E 66 (2002) 036103-1-036103-11
-
(2002)
Phys. Rev. E
, vol.66
-
-
Reick, C.1
-
9
-
-
41349089523
-
Stable resonances and signal propagation in a chaotic network of coupled units
-
Cessac B., and Sepulchre J.-A. Stable resonances and signal propagation in a chaotic network of coupled units. Phys. Rev. E 70 (2004) 056111
-
(2004)
Phys. Rev. E
, vol.70
, pp. 056111
-
-
Cessac, B.1
Sepulchre, J.-A.2
-
13
-
-
33645679781
-
Transmitting a signal by amplitude modulation in a chaotic network
-
Cessac B., and Sepulchre J.-A. Transmitting a signal by amplitude modulation in a chaotic network. Chaos 16 (2006) 013104-1-013104-12
-
(2006)
Chaos
, vol.16
-
-
Cessac, B.1
Sepulchre, J.-A.2
-
14
-
-
33845192729
-
-
note
-
* t d x if F is topologically mixing.
-
-
-
-
15
-
-
0031548918
-
Differentiation of SRB states
-
Ruelle D. Differentiation of SRB states. Comm. Math. Phys. 187 (1997) 227-241
-
(1997)
Comm. Math. Phys.
, vol.187
, pp. 227-241
-
-
Ruelle, D.1
-
16
-
-
0037347051
-
Differentiation of SRB states: Corrections and complements
-
Ruelle D. Differentiation of SRB states: Corrections and complements. Comm. Math. Phys. 234 (2003) 185-190
-
(2003)
Comm. Math. Phys.
, vol.234
, pp. 185-190
-
-
Ruelle, D.1
-
17
-
-
0012081242
-
The case against linear response theory
-
van Kampen N.G. The case against linear response theory. Phys. Nor. 5 (1971) 10
-
(1971)
Phys. Nor.
, vol.5
, pp. 10
-
-
van Kampen, N.G.1
-
18
-
-
0000191480
-
Brownian motion and nonequilibrium statistical mechanics
-
Kubo R. Brownian motion and nonequilibrium statistical mechanics. Science 233 (1986) 330
-
(1986)
Science
, vol.233
, pp. 330
-
-
Kubo, R.1
-
19
-
-
22544473666
-
Differentiating the absolutely continuous invariant measure of an interval map f with respect to f
-
Ruelle D. Differentiating the absolutely continuous invariant measure of an interval map f with respect to f. Comm. Math. Phys. 258 (2005) 445-453
-
(2005)
Comm. Math. Phys.
, vol.258
, pp. 445-453
-
-
Ruelle, D.1
-
20
-
-
33845230224
-
-
B. Cessac, Numerical evidence of linear response violations in chaotic systems, Comm. Math. Phys. (submitted for publication)
-
-
-
-
21
-
-
33845223887
-
-
D. Ruelle, Private communication. One of the referee of the paper pointed out that this method had already been devised by Reick in [7]
-
-
-
-
22
-
-
33845216491
-
-
B. Cessac, J.-A. Sepulchre, First experimental evidence of stable resonances in a chaotic electronic device, in preparation
-
-
-
-
23
-
-
0000049053
-
Field driven thermostated systems: A nonlinear multibaker map
-
Gilbert T., Ferguson C.D., and Dorfman J.R. Field driven thermostated systems: A nonlinear multibaker map. Phys. Rev. E 59 (1999) 364-371
-
(1999)
Phys. Rev. E
, vol.59
, pp. 364-371
-
-
Gilbert, T.1
Ferguson, C.D.2
Dorfman, J.R.3
|