메뉴 건너뛰기




Volumn 16, Issue 2, 2002, Pages 228-231

Image feature representation by the subspace of Nonlinear PCA

Author keywords

Feature representation; Principal component analysis; Subspace classifier; Subspace pattern recognition

Indexed keywords

COMPUTER SIMULATION; NONLINEAR SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; STATISTICS; VECTORS; PATTERN RECOGNITION;

EID: 33751583334     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (18)
  • 5
    • 0024125570 scopus 로고
    • The subspace learning algorithm as a formalism for pattern recognition and neural networks
    • San Diego, CA, July
    • E. Oja and T. Kohonen, "The subspace learning algorithm as a formalism for pattern recognition and neural networks", Proc. IEEE 1988 Int. Conf. On Neural Networks, San Diego, CA, July 1988, pp. 277-284.
    • (1988) Proc. IEEE 1988 Int. Conf. on Neural Networks , pp. 277-284
    • Oja, E.1    Kohonen, T.2
  • 6
    • 0031120740 scopus 로고    scopus 로고
    • Image segmentation using mixture of principal components representation
    • April
    • R.D.Dony, and S. Haykin, "Image segmentation using mixture of principal components representation", IEE Proc.-Vision Image signal processing. Vol. 144, No. 2, April, 1997, pp. 73-80.
    • (1997) IEE Proc.-vision Image Signal Processing , vol.144 , Issue.2 , pp. 73-80
    • Dony, R.D.1    Haykin, S.2
  • 7
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule and signal separation - Mathematical analysis
    • September
    • E.Oja, "The nonlinear PCA learning rule and signal separation - mathematical analysis", Neuro-computing, Vol. 17, September, 1997, pp. 25-45.
    • (1997) Neuro-computing , vol.17 , pp. 25-45
    • Oja, E.1
  • 8
    • 0027206958 scopus 로고
    • Least mean square error reconstruction principal for self organizing neural-nets
    • L. Xu, "least mean square error reconstruction principal for self organizing neural-nets", Neural Networks, Vol. 6, 1993, pp. 627-648.
    • (1993) Neural Networks , vol.6 , pp. 627-648
    • Xu, L.1
  • 9
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • J.Karhunen and J.Joutsensalo, "Representation and separation of signals using nonlinear PCA type learning", Neural Networks, Vol. 7, no. 1, 1994, , pp.113-127.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 10
    • 0003168213 scopus 로고
    • Learning in nonlinear constrained Hebbian networks
    • edited by T. Kohonen et al., North-Holland, Amsterdam
    • E.Oja, H.Ogawa, and J.Wangviwattana, "Learning in nonlinear constrained Hebbian networks", Artificial Neural Networks, edited by T. Kohonen et al., North-Holland, Amsterdam, 1991, pp. 385-390.
    • (1991) Artificial Neural Networks , pp. 385-390
    • Oja, E.1    Ogawa, H.2    Wangviwattana, J.3
  • 11
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforword neural network
    • T.D.Sanger, "Optimal unsupervised learning in a single-layer linear feedforword neural network", Neural Networks, vol. 2, 1989, pp. 459-473.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 14
    • 0030832881 scopus 로고    scopus 로고
    • The independent components of natural scenes are edge filters
    • July
    • J. Anthony Bell and J. Terrencc Sejnowski: "The Independent components of natural scenes are edge filters", Vision research, Vol. 37, No.23, July 1997.
    • (1997) Vision Research , vol.37 , Issue.23
    • Bell, J.A.1    Sejnowski, J.T.2
  • 15
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule and signal separation- Mathematical analysis
    • Sep.
    • E. Oja, "The nonlinear PCA learning rule and signal separation- mathematical analysis," Neurocomputing, vol. 17, Sep. 1997, pp. 25-45
    • (1997) Neurocomputing , vol.17 , pp. 25-45
    • Oja, E.1
  • 17
    • 0029394557 scopus 로고
    • Optimally adaptive transform coding
    • R.D. Dony and S. Haykins, "Optimally adaptive transform coding", IEEE Trans. Image Process, vol. 4, 1995, pp.1358-1370.
    • (1995) IEEE Trans. Image Process , vol.4 , pp. 1358-1370
    • Dony, R.D.1    Haykins, S.2
  • 18
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for nature images
    • June
    • B. A. Olshausen and D.J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for nature images," Nature, Vol. 381, June 1996, pp. 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.