메뉴 건너뛰기




Volumn 45, Issue 23, 2006, Pages 7807-7816

First-principles, data-based, and hybrid modeling and optimization of an industrial hydrocracking unit

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; GENETIC ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS;

EID: 33751565809     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie060247q     Document Type: Article
Times cited : (94)

References (32)
  • 1
    • 33644766977 scopus 로고    scopus 로고
    • Modeling, simulation and multi-objective optimization of an industrial hydrocracking unit
    • Bhutani, N.; Ray A. K.; Rangaiah, G. P. Modeling, simulation and multi-objective optimization of an industrial hydrocracking unit. Ind. Eng. Chem. Res. 2006, 45, 1354.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 1354
    • Bhutani, N.1    Ray, A.K.2    Rangaiah, G.P.3
  • 3
    • 0035390297 scopus 로고    scopus 로고
    • Kinetics and hydrocracking based on structural classes: Model development and application
    • Martens, G. G.; Marin, G. B. Kinetics and hydrocracking based on structural classes: Model development and application. AIChE J. 2001, 47, 1607.
    • (2001) AIChE J. , vol.47 , pp. 1607
    • Martens, G.G.1    Marin, G.B.2
  • 4
    • 30344443674 scopus 로고    scopus 로고
    • Modeling of an industrial wet grinding operation using data-driven techniques
    • Mitra, K.; Ghivari, M. Modeling of an industrial wet grinding operation using data-driven techniques. Comput. Chem. Eng. 2006, 30, 508.
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 508
    • Mitra, K.1    Ghivari, M.2
  • 5
    • 27444431884 scopus 로고    scopus 로고
    • Modeling the drying of a high-moisture solid with an artificial neural network
    • Torrecilla, J. S.; Arago, J. M.; Palancar, M. C. Modeling the drying of a high-moisture solid with an artificial neural network. Ind. Eng. Chem. Res. 2005, 44, 8057.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 8057
    • Torrecilla, J.S.1    Arago, J.M.2    Palancar, M.C.3
  • 8
    • 32644447576 scopus 로고    scopus 로고
    • Modeling of an industrial full-scale plant for biological treatment of textile wastewaters: Application of neural networks
    • Molga, E.; Cherbanski, R.; Szpyrkowicz, L. Modeling of an industrial full-scale plant for biological treatment of textile wastewaters: Application of neural networks. Ind. Eng. Chem. Res. 2006, 45, 1039.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 1039
    • Molga, E.1    Cherbanski, R.2    Szpyrkowicz, L.3
  • 9
    • 13844253427 scopus 로고    scopus 로고
    • Modelling of the performance of industrial HDS reactors using a hybrid neural network approach
    • Bellos, G. D.; Kallinikos, L. E.; Gounaris, C. E.; Papayannakos N. G. Modelling of the performance of industrial HDS reactors using a hybrid neural network approach. Chem. Eng. Process. 2005, 44, 505.
    • (2005) Chem. Eng. Process. , vol.44 , pp. 505
    • Bellos, G.D.1    Kallinikos, L.E.2    Gounaris, C.E.3    Papayannakos, N.G.4
  • 10
    • 0028378552 scopus 로고
    • Hybrid modeling of yeast production processes - A combination of a priori knowledge on different levels of sophistication
    • Schubert, J.; Simutis, R.; Dors, M.; Havlík, I.; Lübbert, A. Hybrid modeling of yeast production processes - A combination of a priori knowledge on different levels of sophistication. Chem. Eng. Technol. 1994, 17, 10.
    • (1994) Chem. Eng. Technol. , vol.17 , pp. 10
    • Schubert, J.1    Simutis, R.2    Dors, M.3    Havlík, I.4    Lübbert, A.5
  • 11
    • 0042827953 scopus 로고    scopus 로고
    • Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation. Growth and agglomeration phenomena
    • Georgieva P.; Meireles M. J.; Feyo de Azevedo, S. Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation. growth and agglomeration phenomena. Chem. Eng. Sci. 2003, 58, 3699.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 3699
    • Georgieva, P.1    Meireles, M.J.2    Feyo De Azevedo, S.3
  • 13
    • 0028969090 scopus 로고
    • Dynamic modeling of the activated sludge process: Improving prediction using neural networks
    • Côte, M.; Grandjean, B. P. A.; Lessard, P.; Thibault, J. Dynamic modeling of the activated sludge process: Improving prediction using neural networks. Water Res. 1995, 29, 995.
    • (1995) Water Res. , vol.29 , pp. 995
    • Côte, M.1    Grandjean, B.P.A.2    Lessard, P.3    Thibault, J.4
  • 14
    • 0026868901 scopus 로고
    • Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach
    • Su, H. T.; McAvoy, T. J.; Werbos, P. Long-Term Predictions of Chemical Processes Using Recurrent Neural Networks: A Parallel Training Approach. Ind. Eng. Chem. Res. 1992, 31, 1338.
    • (1992) Ind. Eng. Chem. Res. , vol.31 , pp. 1338
    • Su, H.T.1    McAvoy, T.J.2    Werbos, P.3
  • 15
    • 0030406831 scopus 로고    scopus 로고
    • Strategy for dynamic process modeling based on neural networks and macroscopic balances
    • Van Can, H. J. L.; Hellinga, C.; Luyben, K. C. A. M.; Heijnen, J.; Braake, H. A. B. Strategy for dynamic process modeling based on neural networks and macroscopic balances. AICHE J. 1996, 42, 3403.
    • (1996) AICHE J. , vol.42 , pp. 3403
    • Van Can, H.J.L.1    Hellinga, C.2    Luyben, K.C.A.M.3    Heijnen, J.4    Braake, H.A.B.5
  • 16
    • 0345593618 scopus 로고    scopus 로고
    • Global optimization of a dryer by using neural networks and genetic algorithms
    • Hugget, A.; Sébastin, P.; Nadeau, J. P. Global optimization of a dryer by using neural networks and genetic algorithms. AIChE J. 1999, 45 (6), 1227.
    • (1999) AIChE J. , vol.45 , Issue.6 , pp. 1227
    • Hugget, A.1    Sébastin, P.2    Nadeau, J.P.3
  • 17
    • 0026806616 scopus 로고
    • A hybrid neural network-first principles approach to process modeling
    • Psichogios, D. C.; Ungar, L. H. A hybrid neural network-first principles approach to process modeling. AIChE J. 1992, 38 (10), 1499.
    • (1992) AIChE J. , vol.38 , Issue.10 , pp. 1499
    • Psichogios, D.C.1    Ungar, L.H.2
  • 18
    • 0028484335 scopus 로고
    • Modeling chemical processes using prior knowledge and neural networks
    • Thompson, M. L.; Kramer, M. A. Modeling chemical processes using prior knowledge and neural networks. AIChE J. 1994, 40, 1328.
    • (1994) AIChE J. , vol.40 , pp. 1328
    • Thompson, M.L.1    Kramer, M.A.2
  • 19
    • 1842840116 scopus 로고    scopus 로고
    • Combining first principles modeling and artificial neural networks: A general framework
    • Oliveira, R. Combining first principles modeling and artificial neural networks: A general framework. Comput. Chem. Eng. 2004, 28, 755.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 755
    • Oliveira, R.1
  • 20
    • 0029394703 scopus 로고
    • Novel approach for optimal process design under uncertainty
    • Pistikopoulous, E. N.; Ierapetritou, M. G. Novel approach for optimal process design under uncertainty. Comput Chem. Eng. 1995, 19, 1089.
    • (1995) Comput Chem. Eng. , vol.19 , pp. 1089
    • Pistikopoulous, E.N.1    Ierapetritou, M.G.2
  • 21
    • 0026853354 scopus 로고
    • Hierarchical neural networks for process monitoring
    • Mavrovouniotis, M. L.; Chang, S. Hierarchical neural networks for process monitoring. Comput. Chem. Eng. 1992, 16 (4), 347.
    • (1992) Comput. Chem. Eng. , vol.16 , Issue.4 , pp. 347
    • Mavrovouniotis, M.L.1    Chang, S.2
  • 25
    • 18844367171 scopus 로고    scopus 로고
    • Variable selection and data preprocessing in NN modelling of complex chemical processes
    • Papadokonstantakis, S.; Machefer, S.; Schnitzlein, K.; Lygeros, A. I. Variable selection and data preprocessing in NN modelling of complex chemical processes. Comput. Chem. Eng. 2005, 29, 1647.
    • (2005) Comput. Chem. Eng. , vol.29 , pp. 1647
    • Papadokonstantakis, S.1    Machefer, S.2    Schnitzlein, K.3    Lygeros, A.I.4
  • 32
    • 0141566589 scopus 로고    scopus 로고
    • Kinetic parameter estimation using genetic algorithms and sequential quadratic programming in a hydrocracker
    • Balasubramaniam, P.; Pushpavanam, S.; Bettina, G.; Balaraman, K. S. Kinetic parameter estimation using genetic algorithms and sequential quadratic programming in a hydrocracker. Ind. Eng. Chem. Res. 2003, 42, 4723-4731.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 4723-4731
    • Balasubramaniam, P.1    Pushpavanam, S.2    Bettina, G.3    Balaraman, K.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.