-
1
-
-
33644766977
-
Modeling, simulation and multi-objective optimization of an industrial hydrocracking unit
-
Bhutani, N.; Ray A. K.; Rangaiah, G. P. Modeling, simulation and multi-objective optimization of an industrial hydrocracking unit. Ind. Eng. Chem. Res. 2006, 45, 1354.
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 1354
-
-
Bhutani, N.1
Ray, A.K.2
Rangaiah, G.P.3
-
2
-
-
0026260128
-
Modeling of a hydrocracking reactor
-
Mohanty, S.; Saraf, D. N.; Kunzru, D. Modeling of a hydrocracking reactor. Fuel Process. Technol. 1991, 29, 1.
-
(1991)
Fuel Process. Technol.
, vol.29
, pp. 1
-
-
Mohanty, S.1
Saraf, D.N.2
Kunzru, D.3
-
3
-
-
0035390297
-
Kinetics and hydrocracking based on structural classes: Model development and application
-
Martens, G. G.; Marin, G. B. Kinetics and hydrocracking based on structural classes: Model development and application. AIChE J. 2001, 47, 1607.
-
(2001)
AIChE J.
, vol.47
, pp. 1607
-
-
Martens, G.G.1
Marin, G.B.2
-
4
-
-
30344443674
-
Modeling of an industrial wet grinding operation using data-driven techniques
-
Mitra, K.; Ghivari, M. Modeling of an industrial wet grinding operation using data-driven techniques. Comput. Chem. Eng. 2006, 30, 508.
-
(2006)
Comput. Chem. Eng.
, vol.30
, pp. 508
-
-
Mitra, K.1
Ghivari, M.2
-
5
-
-
27444431884
-
Modeling the drying of a high-moisture solid with an artificial neural network
-
Torrecilla, J. S.; Arago, J. M.; Palancar, M. C. Modeling the drying of a high-moisture solid with an artificial neural network. Ind. Eng. Chem. Res. 2005, 44, 8057.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 8057
-
-
Torrecilla, J.S.1
Arago, J.M.2
Palancar, M.C.3
-
6
-
-
18444363052
-
Combining mechanistic and empirical modeling
-
Duarte, B.; Saruiva, P. M.; Pantelides, C. C. Combining mechanistic and empirical modeling. Int. J. Chem. React. Eng. 2004, 2, 1.
-
(2004)
Int. J. Chem. React. Eng.
, vol.2
, pp. 1
-
-
Duarte, B.1
Saruiva, P.M.2
Pantelides, C.C.3
-
7
-
-
0012355497
-
Comparison of methods for training Grey-Box neural network models
-
Acuña, G.; Cubillos, F.; Thibault, J.; Latrille, E. Comparison of methods for training Grey-Box neural network models. Comput. Chem. Eng. 1999, 23, S561.
-
(1999)
Comput. Chem. Eng.
, vol.23
-
-
Acuña, G.1
Cubillos, F.2
Thibault, J.3
Latrille, E.4
-
8
-
-
32644447576
-
Modeling of an industrial full-scale plant for biological treatment of textile wastewaters: Application of neural networks
-
Molga, E.; Cherbanski, R.; Szpyrkowicz, L. Modeling of an industrial full-scale plant for biological treatment of textile wastewaters: Application of neural networks. Ind. Eng. Chem. Res. 2006, 45, 1039.
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 1039
-
-
Molga, E.1
Cherbanski, R.2
Szpyrkowicz, L.3
-
9
-
-
13844253427
-
Modelling of the performance of industrial HDS reactors using a hybrid neural network approach
-
Bellos, G. D.; Kallinikos, L. E.; Gounaris, C. E.; Papayannakos N. G. Modelling of the performance of industrial HDS reactors using a hybrid neural network approach. Chem. Eng. Process. 2005, 44, 505.
-
(2005)
Chem. Eng. Process.
, vol.44
, pp. 505
-
-
Bellos, G.D.1
Kallinikos, L.E.2
Gounaris, C.E.3
Papayannakos, N.G.4
-
10
-
-
0028378552
-
Hybrid modeling of yeast production processes - A combination of a priori knowledge on different levels of sophistication
-
Schubert, J.; Simutis, R.; Dors, M.; Havlík, I.; Lübbert, A. Hybrid modeling of yeast production processes - A combination of a priori knowledge on different levels of sophistication. Chem. Eng. Technol. 1994, 17, 10.
-
(1994)
Chem. Eng. Technol.
, vol.17
, pp. 10
-
-
Schubert, J.1
Simutis, R.2
Dors, M.3
Havlík, I.4
Lübbert, A.5
-
11
-
-
0042827953
-
Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation. Growth and agglomeration phenomena
-
Georgieva P.; Meireles M. J.; Feyo de Azevedo, S. Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation. growth and agglomeration phenomena. Chem. Eng. Sci. 2003, 58, 3699.
-
(2003)
Chem. Eng. Sci.
, vol.58
, pp. 3699
-
-
Georgieva, P.1
Meireles, M.J.2
Feyo De Azevedo, S.3
-
13
-
-
0028969090
-
Dynamic modeling of the activated sludge process: Improving prediction using neural networks
-
Côte, M.; Grandjean, B. P. A.; Lessard, P.; Thibault, J. Dynamic modeling of the activated sludge process: Improving prediction using neural networks. Water Res. 1995, 29, 995.
-
(1995)
Water Res.
, vol.29
, pp. 995
-
-
Côte, M.1
Grandjean, B.P.A.2
Lessard, P.3
Thibault, J.4
-
14
-
-
0026868901
-
Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach
-
Su, H. T.; McAvoy, T. J.; Werbos, P. Long-Term Predictions of Chemical Processes Using Recurrent Neural Networks: A Parallel Training Approach. Ind. Eng. Chem. Res. 1992, 31, 1338.
-
(1992)
Ind. Eng. Chem. Res.
, vol.31
, pp. 1338
-
-
Su, H.T.1
McAvoy, T.J.2
Werbos, P.3
-
15
-
-
0030406831
-
Strategy for dynamic process modeling based on neural networks and macroscopic balances
-
Van Can, H. J. L.; Hellinga, C.; Luyben, K. C. A. M.; Heijnen, J.; Braake, H. A. B. Strategy for dynamic process modeling based on neural networks and macroscopic balances. AICHE J. 1996, 42, 3403.
-
(1996)
AICHE J.
, vol.42
, pp. 3403
-
-
Van Can, H.J.L.1
Hellinga, C.2
Luyben, K.C.A.M.3
Heijnen, J.4
Braake, H.A.B.5
-
16
-
-
0345593618
-
Global optimization of a dryer by using neural networks and genetic algorithms
-
Hugget, A.; Sébastin, P.; Nadeau, J. P. Global optimization of a dryer by using neural networks and genetic algorithms. AIChE J. 1999, 45 (6), 1227.
-
(1999)
AIChE J.
, vol.45
, Issue.6
, pp. 1227
-
-
Hugget, A.1
Sébastin, P.2
Nadeau, J.P.3
-
17
-
-
0026806616
-
A hybrid neural network-first principles approach to process modeling
-
Psichogios, D. C.; Ungar, L. H. A hybrid neural network-first principles approach to process modeling. AIChE J. 1992, 38 (10), 1499.
-
(1992)
AIChE J.
, vol.38
, Issue.10
, pp. 1499
-
-
Psichogios, D.C.1
Ungar, L.H.2
-
18
-
-
0028484335
-
Modeling chemical processes using prior knowledge and neural networks
-
Thompson, M. L.; Kramer, M. A. Modeling chemical processes using prior knowledge and neural networks. AIChE J. 1994, 40, 1328.
-
(1994)
AIChE J.
, vol.40
, pp. 1328
-
-
Thompson, M.L.1
Kramer, M.A.2
-
19
-
-
1842840116
-
Combining first principles modeling and artificial neural networks: A general framework
-
Oliveira, R. Combining first principles modeling and artificial neural networks: A general framework. Comput. Chem. Eng. 2004, 28, 755.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 755
-
-
Oliveira, R.1
-
20
-
-
0029394703
-
Novel approach for optimal process design under uncertainty
-
Pistikopoulous, E. N.; Ierapetritou, M. G. Novel approach for optimal process design under uncertainty. Comput Chem. Eng. 1995, 19, 1089.
-
(1995)
Comput Chem. Eng.
, vol.19
, pp. 1089
-
-
Pistikopoulous, E.N.1
Ierapetritou, M.G.2
-
21
-
-
0026853354
-
Hierarchical neural networks for process monitoring
-
Mavrovouniotis, M. L.; Chang, S. Hierarchical neural networks for process monitoring. Comput. Chem. Eng. 1992, 16 (4), 347.
-
(1992)
Comput. Chem. Eng.
, vol.16
, Issue.4
, pp. 347
-
-
Mavrovouniotis, M.L.1
Chang, S.2
-
22
-
-
0029657108
-
Hybrid model of thermal drying in a fluidized bed
-
Zbicinski, I.; Strumillo, P.; Kaminski, W. Hybrid model of thermal drying in a fluidized bed. Comput. Chem. Eng. 1996, 20, 695.
-
(1996)
Comput. Chem. Eng.
, vol.20
, pp. 695
-
-
Zbicinski, I.1
Strumillo, P.2
Kaminski, W.3
-
24
-
-
0003506109
-
-
Pearson Prentice-Hall: Upper Saddle River, NJ
-
Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate data analysis, 6th ed.; Pearson Prentice-Hall: Upper Saddle River, NJ, 2006.
-
(2006)
Multivariate Data Analysis, 6th Ed.
-
-
Hair, J.1
Anderson, R.2
Tatham, R.3
Black, W.4
-
25
-
-
18844367171
-
Variable selection and data preprocessing in NN modelling of complex chemical processes
-
Papadokonstantakis, S.; Machefer, S.; Schnitzlein, K.; Lygeros, A. I. Variable selection and data preprocessing in NN modelling of complex chemical processes. Comput. Chem. Eng. 2005, 29, 1647.
-
(2005)
Comput. Chem. Eng.
, vol.29
, pp. 1647
-
-
Papadokonstantakis, S.1
Machefer, S.2
Schnitzlein, K.3
Lygeros, A.I.4
-
27
-
-
0026849115
-
Process identification using neural networks
-
Pollard, J. F.; Broussard, M. R.; Garrison, D. B.; San, K. Y. Process identification using neural networks. Comput. Chem. Eng. 1992, 16, 253.
-
(1992)
Comput. Chem. Eng.
, vol.16
, pp. 253
-
-
Pollard, J.F.1
Broussard, M.R.2
Garrison, D.B.3
San, K.Y.4
-
29
-
-
0030702721
-
Gauss-Newton approximation to Bayesian regularization
-
IEEE Press: Piscataway, NJ
-
Foresee, F. D.; Hagan, M. T. Gauss-Newton approximation to Bayesian regularization. Proceedings of the 1997 International Joint Conference on Neural Networks; IEEE Press: Piscataway, NJ, 1997; Vol. 3, p 1930.
-
(1997)
Proceedings of the 1997 International Joint Conference on Neural Networks
, vol.3
, pp. 1930
-
-
Foresee, F.D.1
Hagan, M.T.2
-
32
-
-
0141566589
-
Kinetic parameter estimation using genetic algorithms and sequential quadratic programming in a hydrocracker
-
Balasubramaniam, P.; Pushpavanam, S.; Bettina, G.; Balaraman, K. S. Kinetic parameter estimation using genetic algorithms and sequential quadratic programming in a hydrocracker. Ind. Eng. Chem. Res. 2003, 42, 4723-4731.
-
(2003)
Ind. Eng. Chem. Res.
, vol.42
, pp. 4723-4731
-
-
Balasubramaniam, P.1
Pushpavanam, S.2
Bettina, G.3
Balaraman, K.S.4
|