메뉴 건너뛰기




Volumn 182, Issue 2, 2006, Pages 1795-1802

Representation of exact solution for the nonlinear Volterra-Fredholm integral equations

Author keywords

Nonlinear equation; Nonlinear Volterra Fredholm integral equation; Reproducing kernel space

Indexed keywords

APPROXIMATION THEORY; CONVERGENCE OF NUMERICAL METHODS; ERROR CORRECTION; LINEARIZATION; NONLINEAR EQUATIONS; NUMERICAL METHODS;

EID: 33751557307     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.06.016     Document Type: Article
Times cited : (33)

References (11)
  • 1
    • 0033132499 scopus 로고    scopus 로고
    • A new computational method for Volterra-Fredholm integral equations
    • (1994) 339
    • Maleknejad K., and Hadizadeh M. A new computational method for Volterra-Fredholm integral equations. J. Comput. Math. Appl. 37 (1999) 1-8 (1994) 339
    • (1999) J. Comput. Math. Appl. , vol.37 , pp. 1-8
    • Maleknejad, K.1    Hadizadeh, M.2
  • 2
    • 0000211694 scopus 로고
    • Continuous time collocation methods for Volterra-Fredholm integral equations
    • Kauthen P.J. Continuous time collocation methods for Volterra-Fredholm integral equations. Numer. Math. 56 (1989) 409-424
    • (1989) Numer. Math. , vol.56 , pp. 409-424
    • Kauthen, P.J.1
  • 3
    • 0025477912 scopus 로고
    • On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods
    • Brunner H. On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods. SIAM J. Numer. Anal. 27 4 (1990) 987
    • (1990) SIAM J. Numer. Anal. , vol.27 , Issue.4 , pp. 987
    • Brunner, H.1
  • 4
    • 0002868745 scopus 로고
    • Asymptotic error expansion for the Nystrom method for a Volterra-Fredholm integral equations
    • Guoqiang H. Asymptotic error expansion for the Nystrom method for a Volterra-Fredholm integral equations. J. Comput. Appl. Math. 59 (1995) 49-59
    • (1995) J. Comput. Appl. Math. , vol.59 , pp. 49-59
    • Guoqiang, H.1
  • 6
    • 0013154297 scopus 로고
    • New results for convergent of Adomian's method applied to integral equation
    • Cherruault Y., Saccomandi G., and Some B. New results for convergent of Adomian's method applied to integral equation. Math. Comput. Model. 16 2 (1992) 85
    • (1992) Math. Comput. Model. , vol.16 , Issue.2 , pp. 85
    • Cherruault, Y.1    Saccomandi, G.2    Some, B.3
  • 7
    • 0008254857 scopus 로고
    • A Taylor expansion approach for solving integral equations
    • Kanwal R.P., and Liu K.C. A Taylor expansion approach for solving integral equations. Int. J. Math. Educ. Sci. Technol. 20 3 (1989) 411
    • (1989) Int. J. Math. Educ. Sci. Technol. , vol.20 , Issue.3 , pp. 411
    • Kanwal, R.P.1    Liu, K.C.2
  • 8
    • 0008173703 scopus 로고
    • Taylor polynomial solution of Volterra integral equations
    • Sezer M. Taylor polynomial solution of Volterra integral equations. Int. J. Math. Educ. Sci. Technol. 25 5 (1994) 625
    • (1994) Int. J. Math. Educ. Sci. Technol. , vol.25 , Issue.5 , pp. 625
    • Sezer, M.1
  • 9
    • 0037089760 scopus 로고    scopus 로고
    • Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations
    • Yalcinbas S. Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 127 (2002) 195-206
    • (2002) Appl. Math. Comput. , vol.127 , pp. 195-206
    • Yalcinbas, S.1
  • 10
    • 0037845043 scopus 로고    scopus 로고
    • The exact solution for solving a class nonlinear operator equation in reproducing kernel space
    • Li C.-L., and Cui M.-G. The exact solution for solving a class nonlinear operator equation in reproducing kernel space. Appl. Math. Comput. 143 2-3 (2003) 393-399
    • (2003) Appl. Math. Comput. , vol.143 , Issue.2-3 , pp. 393-399
    • Li, C.-L.1    Cui, M.-G.2
  • 11
    • 0001128239 scopus 로고    scopus 로고
    • On approximate solution for integral equations of mixed type
    • Hacia L. On approximate solution for integral equations of mixed type. ZAMM 76 (1996) 415-416
    • (1996) ZAMM , vol.76 , pp. 415-416
    • Hacia, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.