-
1
-
-
31244438004
-
Vertex distinguishing colorings of graphs with Δ(G) = 2
-
Balister, P. N., Bollobás, B., Schelp, R. H.: Vertex distinguishing colorings of graphs with Δ(G) = 2, Discrete Math. 252, 17-29 (2002)
-
(2002)
Discrete Math.
, vol.252
, pp. 17-29
-
-
Balister, P.N.1
Bollobás, B.2
Schelp, R.H.3
-
2
-
-
25544472813
-
-
preprint
-
Balister, P.N., Gyori, E., Lehel, J. Schelp, R.H.: Adjacent vertex distinguishing edge-colorings, preprint (2002)
-
(2002)
Adjacent Vertex Distinguishing Edge-colorings
-
-
Balister, P.N.1
Gyori, E.2
Lehel, J.3
Schelp, R.H.4
-
3
-
-
0347129771
-
Balanced edge colorings
-
Balister, P. N., Kostochka, A., Li, H., Schelp, R. H.: Balanced edge colorings, J. Combin. Theory Ser. B 90, 3-20 (2004)
-
(2004)
J. Combin. Theory Ser. B
, vol.90
, pp. 3-20
-
-
Balister, P.N.1
Kostochka, A.2
Li, H.3
Schelp, R.H.4
-
4
-
-
0037324012
-
Vertex Distinguishing edge colorings of graphs
-
Balister, P. N., Riordan, O.M., Schelp, R. H.: Vertex Distinguishing edge colorings of graphs. J. Graph Theory 42, 95-109 (2003)
-
(2003)
J. Graph Theory
, vol.42
, pp. 95-109
-
-
Balister, P.N.1
Riordan, O.M.2
Schelp, R.H.3
-
5
-
-
0043102771
-
On the vertex-distinguishing proper edge-colorings of graphs
-
Bazgan, C., Harkat-Benhamdine, A., Li, H., Woźniak, M.: On the vertex-distinguishing proper edge-colorings of graphs, J. Combin. Theory Ser. B 75, 288-301 (1999)
-
(1999)
J. Combin. Theory Ser. B
, vol.75
, pp. 288-301
-
-
Bazgan, C.1
Harkat-Benhamdine, A.2
Li, H.3
Woźniak, M.4
-
6
-
-
0035815948
-
A note on the vertex-distinguishing proper colorings of graphs with large minimum degree
-
Bazgan, C., Harkat-Benhamdine, A., Li, H., Woźniak, M.: A note on the vertex-distinguishing proper colorings of graphs with large minimum degree. Discrete Math. 236, 37-42 (2001)
-
(2001)
Discrete Math.
, vol.236
, pp. 37-42
-
-
Bazgan, C.1
Harkat-Benhamdine, A.2
Li, H.3
Woźniak, M.4
-
8
-
-
0031497141
-
Vertex-distinguishing proper edge-colorings
-
Burris A. C. and Schelp, R. H.: Vertex-distinguishing proper edge-colorings, J. Graph Theory 26(2), 73-82 (1997)
-
(1997)
J. Graph Theory
, vol.26
, Issue.2
, pp. 73-82
-
-
Burris, A.C.1
Schelp, R.H.2
-
9
-
-
0040031334
-
Observability of a graph
-
Černý, J., Horňák M., Soták, R.: Observability of a graph, Math. Slovaca 46, 21-31 (1996)
-
(1996)
Math. Slovaca
, vol.46
, pp. 21-31
-
-
Černý, J.1
Horňák, M.2
Soták, R.3
-
10
-
-
0043096446
-
Strong edge colouring of graphs
-
Favaron, O. Li, H., Schelp, R.H.: Strong edge colouring of graphs, Discrete Math. 159, 103-109 (1996)
-
(1996)
Discrete Math.
, vol.159
, pp. 103-109
-
-
Favaron, O.1
Li, H.2
Schelp, R.H.3
-
11
-
-
26944473198
-
Δ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number
-
Hatami, H., Δ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95, 246-256 (2005)
-
(2005)
J. Combin. Theory Ser. B
, vol.95
, pp. 246-256
-
-
Hatami, H.1
-
12
-
-
21844492203
-
Observability of complete multipartite graphs with equipotent parts
-
Horňák, M., Soták, R.: Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41, 289-301 (1995)
-
(1995)
Ars Combin.
, vol.41
, pp. 289-301
-
-
Horňák, M.1
Soták, R.2
-
14
-
-
38149147294
-
Total colouring regular bipartite graphs is NP-hard
-
McDiarmid, C. J. H., Sánchez-Arroyo, A.: Total colouring regular bipartite graphs is NP-hard, Discrete Math. 124, 155-162 (1994)
-
(1994)
Discrete Math.
, vol.124
, pp. 155-162
-
-
McDiarmid, C.J.H.1
Sánchez-Arroyo, A.2
-
15
-
-
31244437262
-
Adjacent strong edge coloring of graphs
-
Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15, 623-626 (2002)
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 623-626
-
-
Zhang, Z.1
Liu, L.2
Wang, J.3
|