-
1
-
-
33751533323
-
Decomposing an image: Application to textured images and SAR images
-
J.F. Aujol, G. Aubert, L. Blanc-Feraud, and A. Chambolle, "Decomposing an image: Application to textured images and SAR images, " J. Math. Imaging Vision, 2005.
-
(2005)
J. Math. Imaging Vision
-
-
Aujol, J.F.1
Aubert, G.2
Blanc-Feraud, L.3
Chambolle, A.4
-
2
-
-
49949144765
-
The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming
-
L.M. Bregman, "The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, " USSR Comp. Math. and Math. Phys., Vol. 7, pp. 200-217, 1967.
-
(1967)
USSR Comp. Math. and Math. Phys.
, vol.7
, pp. 200-217
-
-
Bregman, L.M.1
-
3
-
-
6444243748
-
Convergence rates of convex variational regularization
-
M. Burger and S. Osher, "Convergence rates of convex variational regularization, " Inverse Problems, Vol. 20, pp. 1411-1422, 2004.
-
(2004)
Inverse Problems
, vol.20
, pp. 1411-1422
-
-
Burger, M.1
Osher, S.2
-
4
-
-
19544388133
-
1 function approximation
-
UCLA, Los Angeles, CA, CAM-Report 04-07
-
1 function approximation, CAM-Report 04-07, UCLA, Los Angeles, CA, CAM-Report 04-07, 2004.
-
(2004)
CAM-report
, vol.4
, Issue.7
-
-
Chan, T.F.1
Esedoglu, S.2
-
5
-
-
0000433247
-
Convergence analysis of a proximal-like minimization algorithm using bregman functions
-
G. Chen and M. Teboulle, "Convergence analysis of a proximal-like minimization algorithm using bregman functions, " SIAM J. Optim., Vol. 3, pp. 538-543, 1993.
-
(1993)
SIAM J. Optim.
, vol.3
, pp. 538-543
-
-
Chen, G.1
Teboulle, M.2
-
6
-
-
33646556919
-
Second order cone programming methods for total variation-based image restoration
-
Columbia University, New York
-
D. Goldfarb and W. Yin, Second order cone programming methods for total variation-based image restoration, CORC Report TR-2004-05, Columbia University, New York, 2004.
-
(2004)
CORC Report
, vol.TR-2004-05
-
-
Goldfarb, D.1
Yin, W.2
-
7
-
-
0031190440
-
Proximal minimization methods with generalized bregman functions
-
K.C. Kiwiel, "Proximal minimization methods with generalized bregman functions, " SIAM J. Control Optim., Vol. 35, pp. 1142-1168, 1997.
-
(1997)
SIAM J. Control Optim.
, vol.35
, pp. 1142-1168
-
-
Kiwiel, K.C.1
-
8
-
-
33751502910
-
Blind deconvolution using TV regularization and bregman iteration
-
H. Lin, A. Marquina and S. Osher, "Blind deconvolution using TV regularization and bregman iteration, " UCLA CAM report, pp. 04-51, 2004.
-
(2004)
UCLA CAM Report
, pp. 04-51
-
-
Lin, H.1
Marquina, A.2
Osher, S.3
-
10
-
-
19844370110
-
An iterative regularization method for total variation based image restoration
-
to appear
-
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, "An iterative regularization method for total variation based image restoration, " Multiscale Modeling and Simulation. to appear 2005.
-
(2005)
Multiscale Modeling and Simulation
-
-
Osher, S.1
Burger, M.2
Goldfarb, D.3
Xu, J.4
Yin, W.5
-
11
-
-
0030524567
-
The discrepancy principle for iterative and parametric methods to solve linear illposed problems
-
R. Plato, "The discrepancy principle for iterative and parametric methods to solve linear illposed problems, " Numer. Math., Vol. 75, pp. 99-120, 1996.
-
(1996)
Numer. Math.
, vol.75
, pp. 99-120
-
-
Plato, R.1
-
12
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L.I. Rudin, S.J. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms, " Phys. D, Vol. 60, pp. 259-268, 1992.
-
(1992)
Phys. D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.J.2
Fatemi, E.3
-
14
-
-
0013293203
-
Inverse scale space theory for inverse problems
-
M. Kerckhove (Ed.), Scale-Space and Morphology in Computer Vision Springer, New York
-
O. Scherzer and C. Groetsch, "Inverse scale space theory for inverse problems, " In M. Kerckhove (Ed.), Scale-Space and Morphology in Computer Vision, Lecture Notes in Comput. Sci. 2106, Springer, New York, 2001, pp. 317-325.
-
(2001)
Lecture Notes in Comput. Sci.
, vol.2106
, pp. 317-325
-
-
Scherzer, O.1
Groetsch, C.2
|