메뉴 건너뛰기




Volumn 65, Issue 2-3, 2006, Pages 361-387

Modeling, analyzing, and synthesizing expressive piano performance with graphical models

Author keywords

Graphical models; Hierarchical hidden Markov models; Music performance; Musical information retrieval

Indexed keywords

GRAPHICAL MODELS; HIERARCHICAL HIDDEN MARKOV MODELS; MUSIC PERFORMANCE; MUSICAL INFORMATION RETRIEVAL;

EID: 33751513974     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-006-8751-3     Document Type: Article
Times cited : (25)

References (36)
  • 1
    • 0035066103 scopus 로고    scopus 로고
    • An interactive cbr approach for generating expressive music
    • Arcos, J., & de Mántaras, R.L. (2001). An interactive cbr approach for generating expressive music. Journal of Applied Intelligence, 27(1), 115-129.
    • (2001) Journal of Applied Intelligence , vol.27 , Issue.1 , pp. 115-129
    • Arcos, J.1    De Mántaras, R.L.2
  • 2
    • 0000802938 scopus 로고    scopus 로고
    • Markovian models for sequential data
    • Bengio, Y. (1999). Markovian models for sequential data. Neural Computing Surveys, 2, 129-162.
    • (1999) Neural Computing Surveys , vol.2 , pp. 129-162
    • Bengio, Y.1
  • 5
    • 0000148207 scopus 로고    scopus 로고
    • An entropic estimator for structure discovery
    • M. J. Kearns, S.A. Solla, and D. A. Cohn (Eds.) MIT Press: Cambridge, MA
    • Brand, M. (1999a). An entropic estimator for structure discovery. In M. J. Kearns, S.A. Solla, and D. A. Cohn (Eds.), Advances in Neural Information Processing Systems 11. MIT Press: Cambridge, MA.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Brand, M.1
  • 6
    • 0005009033 scopus 로고    scopus 로고
    • Pattern discovery via entropy minimization
    • D. Heckerman and C. Whittaker (Eds.)
    • Brand, M. (1999b). Pattern discovery via entropy minimization. In: D. Heckerman and C. Whittaker (Eds.), Artificial Intelligence and Statistics, Morgan Kaufman.
    • (1999) Artificial Intelligence and Statistics, Morgan Kaufman
    • Brand, M.1
  • 7
    • 0000675167 scopus 로고    scopus 로고
    • Structure learning in conditional probability models via an entropic prior and parameter extinction
    • Brand, M. (1999c). Structure learning in conditional probability models via an entropic prior and parameter extinction. Neural Computation, 11(5), 1155-1182.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1155-1182
    • Brand, M.1
  • 8
    • 84937437186 scopus 로고    scopus 로고
    • Voice puppetry
    • A. Rockwood (Ed.). Los Angeles
    • Brand, M. (1999d). Voice puppetry. In: A. Rockwood (Ed.), Proceedings of ACM SIGGRAPH 1999 (pp. 21-28), Los Angeles.
    • (1999) Proceedings of ACM SIGGRAPH 1999 , pp. 21-28
    • Brand, M.1
  • 12
    • 9444223674 scopus 로고    scopus 로고
    • Monte carlo methods for tempo tracking and rhythm quantization
    • Cemgil, A., & Kappen, H. (2003). Monte carlo methods for tempo tracking and rhythm quantization. Journal of Artifical Intelligence Research, 18, 45-81.
    • (2003) Journal of Artifical Intelligence Research , vol.18 , pp. 45-81
    • Cemgil, A.1    Kappen, H.2
  • 15
    • 0036748814 scopus 로고    scopus 로고
    • AI and music: From composition to expressive performances
    • de Mántaras, R.L., & Arcos, J. (2002). AI and music: From composition to expressive performances. AI Magazine, 23(3), 43-57.
    • (2002) AI Magazine , vol.23 , Issue.3 , pp. 43-57
    • De Mántaras, R.L.1    Arcos, J.2
  • 16
    • 0002825820 scopus 로고    scopus 로고
    • Automatic extraction of tempo and beat from expressive performances
    • Dixon, S. (2001). Automatic extraction of tempo and beat from expressive performances. Journal New Music Research, 30(1), 39-58.
    • (2001) Journal New Music Research , vol.30 , Issue.1 , pp. 39-58
    • Dixon, S.1
  • 17
    • 0032119668 scopus 로고    scopus 로고
    • The hierarchical hidden Markov model: Analysis and applications
    • Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden Markov model: Analysis and applications. Machine Learning, 32(1), 41-62.
    • (1998) Machine Learning , vol.32 , Issue.1 , pp. 41-62
    • Fine, S.1    Singer, Y.2    Tishby, N.3
  • 19
    • 33751504131 scopus 로고    scopus 로고
    • Beat tracking the graphical model way
    • L. K. Saul, Y. Weiss, and L. Bottou, (Eds.). Cambridge, MA: MIT Press
    • Lang, D., & de Freitas, N. (2005). Beat tracking the graphical model way. In: L. K. Saul, Y. Weiss, and L. Bottou, (Eds.), Advances in Neural Information Processing Systems 17 (pp. 745-752). Cambridge, MA: MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 745-752
    • Lang, D.1    De Freitas, N.2
  • 21
    • 84899005183 scopus 로고    scopus 로고
    • Linear-time inference in hierarchical hmms
    • T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.). Cambridge MIT Press
    • Murphy, K.P., & Paskin, M.A. (2002). Linear-time inference in hierarchical hmms. In: T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 833-840), Cambridge MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 833-840
    • Murphy, K.P.1    Paskin, M.A.2
  • 23
    • 13644280790 scopus 로고    scopus 로고
    • Automatic transcription of piano music
    • D. Heckerman and C. Whittaker, (Eds.). Paris. France
    • Raphael, C. (2002a). Automatic transcription of piano music. In D. Heckerman and C. Whittaker, (Eds.), Proceedings ISMIR. Paris. France.
    • (2002) Proceedings ISMIR
    • Raphael, C.1
  • 24
    • 84898978589 scopus 로고    scopus 로고
    • A Bayesian Network for real-time musical accompaniment
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, (Eds.). Cambridge, MA: MIT Press
    • Raphael, C. (2002b). A Bayesian Network for real-time musical accompaniment. In T.G. Dietterich, S. Becker, and Z. Ghahramani, (Eds.), Advances in Neural Information Processing Systems 14, (pp. 1433-1439). Cambridge, MA: MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 1433-1439
    • Raphael, C.1
  • 25
    • 0026467329 scopus 로고
    • Diversity and commonality in music performance: An analysis of timing microstructure in Schumann's trumerei
    • Repp, B. (1992). Diversity and commonality in music performance: An analysis of timing microstructure in Schumann's trumerei. Journal of the Acoustical Society of America, 92, 2546-2568.
    • (1992) Journal of the Acoustical Society of America , vol.92 , pp. 2546-2568
    • Repp, B.1
  • 26
    • 84990361628 scopus 로고    scopus 로고
    • Expressive timing in a debussy prelude: A comparison of student and expert pianists
    • Repp, B. (1997). Expressive timing in a debussy prelude: A comparison of student and expert pianists. Musicae Scientiae, 1(2), 257-268.
    • (1997) Musicae Scientiae , vol.1 , Issue.2 , pp. 257-268
    • Repp, B.1
  • 29
    • 17644363009 scopus 로고    scopus 로고
    • Automatic identification of music performers with learning ensembles
    • Stamatatos, E., & Widmer, G. (2005). Automatic identification of music performers with learning ensembles. Artificial Intelligence, 165(1), 37-56.
    • (2005) Artificial Intelligence , vol.165 , Issue.1 , pp. 37-56
    • Stamatatos, E.1    Widmer, G.2
  • 32
    • 0026653777 scopus 로고
    • The dynamics of dynamics: A model of musical expression
    • Todd, N. (1992). The dynamics of dynamics: A model of musical expression. Journal of the Acoustical Society of America, 91, 3540-3550.
    • (1992) Journal of the Acoustical Society of America , vol.91 , pp. 3540-3550
    • Todd, N.1
  • 33
    • 0041521139 scopus 로고    scopus 로고
    • Learning kernel-based hmms for dynamic sequence synthesis
    • Wang, T., Zheng, N., Li, Y., Xu, Y., & Shum, H. (2003). Learning kernel-based hmms for dynamic sequence synthesis. Graphical Models, 65(4), 206-221.
    • (2003) Graphical Models , vol.65 , Issue.4 , pp. 206-221
    • Wang, T.1    Zheng, N.2    Li, Y.3    Xu, Y.4    Shum, H.5
  • 34
    • 33646192105 scopus 로고    scopus 로고
    • Computational models of expressive music performance: The state of the art
    • Widmer, G., & Goebl, W. (2004). Computational models of expressive music performance: The state of the art. Journal of New Music Research, 33(3), 203-216.
    • (2004) Journal of New Music Research , vol.33 , Issue.3 , pp. 203-216
    • Widmer, G.1    Goebl, W.2
  • 35
    • 0141994463 scopus 로고    scopus 로고
    • Playing mozart by analogy: Learning multi-level timing and dynamics strategies
    • Widmer, G., & Tobudic, A. (2003). Playing mozart by analogy: Learning multi-level timing and dynamics strategies. Journal of New Music Research. 32(3), 259-268.
    • (2003) Journal of New Music Research , vol.32 , Issue.3 , pp. 259-268
    • Widmer, G.1    Tobudic, A.2
  • 36
    • 0037880429 scopus 로고    scopus 로고
    • Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries
    • Widmer, G. (2003). Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries. Artificial Intellignece, 146(2), 129-148.
    • (2003) Artificial Intellignece , vol.146 , Issue.2 , pp. 129-148
    • Widmer, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.