메뉴 건너뛰기




Volumn 309, Issue 1, 2007, Pages 318-359

A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra

Author keywords

Bernoulli numbers; Deformations of algebras; Formal schemes; Lie algebras; Representations; Weyl algebra

Indexed keywords


EID: 33751435134     PISSN: 00218693     EISSN: 1090266X     Source Type: Journal    
DOI: 10.1016/j.jalgebra.2006.08.025     Document Type: Article
Times cited : (62)

References (17)
  • 2
    • 0037091731 scopus 로고    scopus 로고
    • Coproduct and star product in field theories on Lie-algebra non-commutative space-times
    • hep-th/0105120
    • Amelino-Camelia G., and Arzano M. Coproduct and star product in field theories on Lie-algebra non-commutative space-times. Phys. Rev. D 65 (2002) 084044. hep-th/0105120
    • (2002) Phys. Rev. D , vol.65 , pp. 084044
    • Amelino-Camelia, G.1    Arzano, M.2
  • 3
    • 33646481410 scopus 로고    scopus 로고
    • Realization of coherent state Lie algebras by differential operators
    • Boca F., Bratteli O., et al. (Eds). June 2003, Sinaia, Romania, The Theta Foundation, Bucharest. math.DG/0504053
    • Berceanu S. Realization of coherent state Lie algebras by differential operators. In: Boca F., Bratteli O., et al. (Eds). Operator Algebras and Mathematical Physics, Proc. Int. Conf. June 2003, Sinaia, Romania (2005), The Theta Foundation, Bucharest 1-24. math.DG/0504053
    • (2005) Operator Algebras and Mathematical Physics, Proc. Int. Conf. , pp. 1-24
    • Berceanu, S.1
  • 4
    • 33751434461 scopus 로고
    • Hermann, Paris (Ch. I), 1972 (Ch. II-III) (in French); Springer 1975, 1989 (Ch. I-III, in English)
    • Bourbaki N. Lie Groups and Algebras, Ch. I-III (1971), Hermann, Paris (Ch. I), 1972 (Ch. II-III) (in French); Springer 1975, 1989 (Ch. I-III, in English)
    • (1971) Lie Groups and Algebras, Ch. I-III
    • Bourbaki, N.1
  • 6
    • 0001472325 scopus 로고    scopus 로고
    • Lie theory of formal groups over an operad
    • MR99c:14063
    • Fresse B. Lie theory of formal groups over an operad. J. Algebra 202 2 (1998) 455-511 MR99c:14063
    • (1998) J. Algebra , vol.202 , Issue.2 , pp. 455-511
    • Fresse, B.1
  • 7
    • 0039671752 scopus 로고
    • Schémas en groupes. I: Propriétés générales des schémas en groupes, SGA 3, vol. 1
    • Springer
    • Demazure M., Grothendieck A., et al. Schémas en groupes. I: Propriétés générales des schémas en groupes, SGA 3, vol. 1. Lecture Notes in Math. vol. 151 (1970), Springer
    • (1970) Lecture Notes in Math. , vol.151
    • Demazure, M.1    Grothendieck, A.2
  • 8
    • 0035285136 scopus 로고    scopus 로고
    • A pseudo-analyzer approach to formal group laws not of operad type
    • MR2002h:14074
    • Holtkamp R. A pseudo-analyzer approach to formal group laws not of operad type. J. Algebra 237 1 (2001) 382-405 MR2002h:14074
    • (2001) J. Algebra , vol.237 , Issue.1 , pp. 382-405
    • Holtkamp, R.1
  • 10
    • 0003672011 scopus 로고
    • Nonlinear Poisson Brackets
    • Amer. Math. Soc.
    • Karasev M., and Maslov V. Nonlinear Poisson Brackets. Transl. Math. Monogr. vol. 119 (1993), Amer. Math. Soc.
    • (1993) Transl. Math. Monogr. , vol.119
    • Karasev, M.1    Maslov, V.2
  • 11
    • 0034349039 scopus 로고    scopus 로고
    • Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula
    • math.QA/9811174 MR2002h:53154
    • Kathotia V. Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula. Internat. J. Math. 11 4 (2000) 523-551. math.QA/9811174 MR2002h:53154
    • (2000) Internat. J. Math. , vol.11 , Issue.4 , pp. 523-551
    • Kathotia, V.1
  • 12
    • 3843152796 scopus 로고    scopus 로고
    • Deformation quantization of Poisson manifolds
    • MR2005i:53122
    • Kontsevich M. Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 3 (2003) 157-216 MR2005i:53122
    • (2003) Lett. Math. Phys. , vol.66 , Issue.3 , pp. 157-216
    • Kontsevich, M.1
  • 13
    • 0000515990 scopus 로고
    • Quantum κ-Poincaré in any dimensions
    • hep-th/9310117
    • Lukierski J., and Ruegg H. Quantum κ-Poincaré in any dimensions. Phys. Lett. B 329 (1994) 189-194. hep-th/9310117
    • (1994) Phys. Lett. B , vol.329 , pp. 189-194
    • Lukierski, J.1    Ruegg, H.2
  • 14
    • 30544453195 scopus 로고    scopus 로고
    • New Lie-algebraic and quadratic deformations of Minkowski space from twisted Poincaré symmetries
    • hep-th/0508083
    • Lukierski J., and Woronowicz M. New Lie-algebraic and quadratic deformations of Minkowski space from twisted Poincaré symmetries. Phys Lett. B 633 (2006) 116-124. hep-th/0508083
    • (2006) Phys Lett. B , vol.633 , pp. 116-124
    • Lukierski, J.1    Woronowicz, M.2
  • 15
    • 33746800715 scopus 로고    scopus 로고
    • New realizations of Lie algebra kappa-deformed Euclidean space
    • hep-th/0605133
    • Meljanac S., and Stojić M. New realizations of Lie algebra kappa-deformed Euclidean space. Eur. Phys. J. C 47 (2006) 531-539. hep-th/0605133
    • (2006) Eur. Phys. J. C , vol.47 , pp. 531-539
    • Meljanac, S.1    Stojić, M.2
  • 16
    • 33751424266 scopus 로고    scopus 로고
    • Quantized moduli spaces of the bundles on the elliptic curve and their applications
    • Integrable Structures of Exactly Solvable 2d Models of QFT. Kiev, 2000, Kluwer, Dordrecht. math.QA/9812059 MR2002j:14040
    • Odesskii A.V., and Feigin B.L. Quantized moduli spaces of the bundles on the elliptic curve and their applications. Integrable Structures of Exactly Solvable 2d Models of QFT. Kiev, 2000. NATO Sci. Ser. II Math. Phys. Chem. vol. 35 (2001), Kluwer, Dordrecht 123-137. math.QA/9812059 MR2002j:14040
    • (2001) NATO Sci. Ser. II Math. Phys. Chem. , vol.35 , pp. 123-137
    • Odesskii, A.V.1    Feigin, B.L.2
  • 17
    • 0038375721 scopus 로고    scopus 로고
    • Universal representations of Lie algebras by coderivations
    • math.RT/0303020 MR2004f:17026
    • Petracci E. Universal representations of Lie algebras by coderivations. Bull. Sci. Math. 127 5 (2003) 439-465. math.RT/0303020 MR2004f:17026
    • (2003) Bull. Sci. Math. , vol.127 , Issue.5 , pp. 439-465
    • Petracci, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.